高中数学说课稿

时间:2024-07-16 16:43:30 说课稿 我要投稿

高中数学说课稿

  作为一名人民教师,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。说课稿要怎么写呢?下面是小编整理的高中数学说课稿,仅供参考,欢迎大家阅读。

高中数学说课稿

高中数学说课稿1

  尊敬的各位专家、评委:

  大家好!

  我是卢龙县木井中学数学教师xx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

  一、教材分析

  “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

  二、学情分析

  我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

  三、教学目标

  1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

  过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

  2、教学重点、难点

  教学重点:正弦定理的发现与证明;正弦定理的简单应用。

  教学难点:正弦定理证明及应用。

  四、教学方法与手段

  为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

  五、教学过程

  为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

  (一)创设情景,揭示课题

  问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

  1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

  问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

  [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

  (二)特殊入手,发现规律

  问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

  引导启发学生发现特殊情形下的正弦定理

  (三)类比归纳,严格证明

  问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

  [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

  问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

  [设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的'同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

  问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

  教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

  [设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

  (四)强化理解,简单应用

  下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

  [设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

  我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

  问题7:(教材例题1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

  [设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

  强化练习

  让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

  问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

  (五)小结归纳,深化拓展

  1、正弦定理

  2、正弦定理的证明方法

  3、正弦定理的应用

  4、涉及的数学思想和方法。

  [设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

  (六)布置作业,巩固提高

  1、教材10页习题1.1A组第1题。

  2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

  证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

  [设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

高中数学说课稿2

  一、教学目标:

  知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

  过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

  情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

  二、教学重点、难点:

  重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

  三、教学过程:

  教学环节

  教学内容和形式

  设计意图

  复习

  提问:

  (1)圆的定义是什么?圆的标准方程的形式怎样?

  (2)如何推导圆的标准方程呢?

  激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

  讲授新课

  一、授新

  1.椭圆的定义:(略)

  活动过程:

  操作-----交流-----归纳-----多媒体演示-----联系生活

  形成概念:

  操作:

  <1>固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?

  在动手过程中,培养学生观察、辨析、归纳问题的能力。

  在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

  教学环节

  深化概念:

  注:1、平面内。

  2、若,则点P的轨迹为椭圆。

  若,则点P的轨迹为线段。

  若,则点P的轨迹不存在。

  联系生活:

  情境1.生活中,你见过哪些类似椭圆的图形或物体?

  情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)

  情境3.观看天体运行的轨道图片。

  教学内容和形式:

  准确理解椭圆的定义。

  渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

  设计意图:

  2.椭圆的标准方程:

  例:已知点、为椭圆的两个焦点,P为椭圆上的任意一点,且,其中,求椭圆的方程

  活动过程:点拨-----板演-----点评

  一般步骤:

  (1)建系设点

  (2)写出点的集合

  (3)写出代数方程

  (4)化简方程:

  <1>请一位基础较好,书写规范的同学板演。

  (5)证明:讨论推导的等价性

  掌握椭圆标准方程及推导方法。

  培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

  养成学生扎实严谨的科学态度。

  应用

  举例

  教学环节

  二、应用

  例1.(1)椭圆的焦点坐标为:

  (2)椭圆的焦距为4,则m的值为:

  活动过程:思考-----解答-----点评

  例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的'和等于10,求椭圆的标准方程

  活动过程:思考-----解答-----点评

  变式<1>已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

  求椭圆的标准方程

  活动过程:思考-----解答-----点评

  认清椭圆两种标准方程形式上的特征。

  课堂小结:

  提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

  活动过程:教师提问-----学生小结-----师生补充完善。

  让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

  作业布置:

  作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

  探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?

  分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

  四、板书设计

  8.1椭圆及其标准方程

  一、复习引入二、新课讲解三、习题研讨

  1.椭圆的定义

  2.椭圆的标准方程

  总体说明:本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。

高中数学说课稿3

  一.说教材

  1.1 教材结构与内容简析

  本节课为《江苏省中等职业学校试用教材数学(第二册)》5.6函数图象的定位作图法的第一课时,主要内容为基本函数 与一般函数 间的图象平移变换规律。

  函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。

  1.2 教学目标

  1.2.1知识目标

  ⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与 、 符号的关系。

  ⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。

  ⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。

  1.2.2能力目标

  ⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。

  ⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学

  地解决问题。

  ⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。

  1.2.3情感目标

  培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。

  1.3 教材重点和难点处理思路

  重点:函数图象的平移变换规律及应用

  难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数

  教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的.话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”

  为了突出重点、突破难点,在教学中采取了以下策略:

  ⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中 、 符号的关系,抽象、归纳出平移变换规律。 ⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如 的函数须提取 前的系数化为 的形式,从而真正认识解析式形式化的特点。

  ⑶、数学实验采取小组合作研究共同完成简单实验报告的形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。

  二.说教法

  针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。

  本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。

  另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数 的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。

  总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。

  三.说学法

  “学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。

  美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。

  教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。

  四.说程序

  4.1创设情境,引入课题

  在简要回顾前面研究的具体函数(指数函数、幂函数、三角函数等)性质后,提出问题“如何研究 的性质?”

  引导学生讨论后,总结出两种思路,即:思路1、通过描点法作出函数的图象,借助于图象研究相关性质;思路2、将 的性质问题化归为 的问题,借助于基本函数 的性质解决新问题。

  从而自然地引出课题,关键是找出 与 的关系,尤其是图象间的联系。更一般地,就是基本函数 与 间的联系。

  4.2数学实验,自主探索

  这一环节主要分两阶段。

  1、尝试初探

  引例、函数 与 图象间的关系

  这一阶段主要由教师讲解,学生观察发现,意在突出两函数图象形状相同、位置不同,后者可以由前者平移得到。

  讲解时,利用几何画板的度量功能,给出两个对应点的坐标,易于学生发现点的坐标关系,并给出相应的辅助线,一方面便于学生发现规律,另一方面也是为后面定位作图法的学习作好铺垫。

  2、实验发现

  本阶段由学生以小组合作探索的形式完成,通过填写实验报告的形式完成探索规律的任务。 实验1、试改变实验平台1中的参数 、 ,观察由 的图象到 的变换现象,依照给出的样例填写下表,并总结其中的平移变换规律。

  函数 解析式平移变换规律12向左平移2个单位,向上平移1个单位 实验结论

高中数学说课稿4

尊敬的各位考官

  大家好,我是今天的X号考生,今天我说课的题目是《指数函数及其性质》。

  新课标指出:高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解。本节课选自人教A版高中数学必修1,主要讲解的内容是指数函数的概念以及它的图象和性质。之前学生已经学习了指数的运算以及指数的相关性质,为本节课奠定了一定的基础,并且之前学习函数性质的方法也为本节课的探究提供了帮助。本节课的学习,为以后研究函数的性质,以及解决生活中的问题起到非常关键性的作用。所以,本节课的学习对于学生来说至关重要。

  二、说学情

  接下来谈谈学生的实际情况。高中一年级的学生虽然刚刚步入高中,需要适当地适应高中的教学方式,但是学生的观察能力、总结能力、归纳能力、类比能力、抽象等能力已经发展比较成熟。所以教学中,可以将更多的活动交给学生进行探究,还可以进行自主学习,提高各方面的能力。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点。

  (二)过程与方法

  在学习的过程中,体会研究具体函数及其性质的过程和方法,体会从具体到一般的过程,学会数形结合的.方法。

  (三)情感、态度与价值观

  感受数学与现实生活及其他学科的联系,感受数学的重要性。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:指数函数的概念和性质。教学难点是:用数形结合的方法从具体到一般地探索、概括指数函数的性质。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  接下来引导学生类比之前研究函数的方法,明确函数图象在研究性质中起到非常重要的作用,利用数形结合思想研究函数的性质。

  以上过程中充分体现了学生是学习的主体,教师是组织者、引导者、合作者。通过这样的教学,不仅能够让学生有一个轻松愉快的学习氛围,还能够帮助学生提高发现问题、分析问题、解决问题等能力。

高中数学说课稿5

  说课:古典概型

  麻城理工学校谢卫华

  (一)教材地位及作用:本节课是高中数学(必修

  3)第三章概率的第二节古典概型的第一课时,是在

  随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

  根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;

  根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  (二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:

  1.知识与技能

  (1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观

  概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的.同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神

  (三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观

  察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

  (四)教学过程:

  一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

  试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

  教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?

  二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称

  古典概型。

  三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率

  结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即

  1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的概率相等,即

  P(“出现正面朝上”)==

  2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典

  P(“出现偶数点”)==

  6基本事件的总数

  概型计算任何事件的

  的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;

  (2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。

  五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

  (五)布置作业P123练习1、2题(六)板书设计

  3.2.13.2.1古典概型古典概型试验一试验二基本事件

  古典概型概率

  计算公式

  例3列表

  例1树状图古典概型

  例2

  以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!

  说课教案:古典概型

  麻城理工学校谢卫华

高中数学说课稿6

  教学目标

  (1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。

  (2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。

  (3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。

  教学重点:

  (1)抛物线的定义及焦点、准线;

  (2)利用坐标法求出抛物线的四种标准方程;

  (3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。

  教学难点:

  (1)抛物线的四种图形及标准方程的区分;

  (2)抛物线定义及焦点、准线等知识的灵活运用。

  教学方法:

  启发引导法(通过椭圆与双曲线第二定义引出抛物线)。

  依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归纳)。

  利用多媒体教学

  教学过程:

  一、课题引入

  利用学生已有知识提问学生:1、椭圆的第二种定义:到定点与到定直线的距离的比是小于1的常数的点的轨迹是椭圆。(用课件演示)

  2、双曲线的第二种定义:到定点与到定直线的距离的比是大于1的常数的点的轨迹是双曲线。(用课件演示)

  由此引出:到定点的距离和到定直线的距离的比是等于1的常数的点的轨迹是什么?

  (以问题为出发点,创设情景,提高学生求知欲)

  教师用直尺、三角板和细绳演示,学生观察所得曲线。

  从而引出本节课的学习内容。

  二、讲授新课

  1、对抛物线的初步认识

  物理中抛物线的运动轨迹;数学中二次函数的图象;生活中抛物线的实例(图片显示)等。

  2、抛物线的定义

  3、抛物线标准方程的推导:

  ①学生回顾求曲线方程的步骤(建系、设点、列方程);

  ②若焦点F和准线的距离为()这样建立坐标系?由学生思考:可能出现的结果:

  四、课堂小结

  1、本节课的内容:抛物线的定义,焦点、准线的意义及四种标准方程;

  2、理解参数的几何意义(焦准距)

  3、利用坐标法求曲线方程是坐标系的适当选取。

  课后作业:119页习题8.52

  4、设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。

  抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的`对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。

  利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。

  当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

高中数学说课稿7

  本节课讲述的是人教版高一数学(上)3.2等差数列(第一课时)的内容。

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

  b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  根据教学大纲的要求我确定本节课的教学重点为:

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

  二、学情教法分析:

  对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合

  这类学生的心理发展特点,从而促进思维能力的进一步发展。

  针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导:

  在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的.问题弄清。

  四、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

  通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

  2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①

  3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②

  通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,

  这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

  若一等差数列{an }的首项是a1,公差是d,则据其定义可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:

  an=a1+(n-1)d

  此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

  (1)

  当n=1时,(1)也成立,

  所以对一切n∈N﹡,上面的公式都成立

  因此它就是等差数列{an}的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。

  利用等差数列概念启发学生写出n-1个等式。

  对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。

  在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

  接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此来巩固等差数列通项公式运用

  同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另

  一部分量。

  例1 (1)求等差数列8,5,2,?的第20项;第30项;第40项

  (2)-401是不是等差数列-5,-9,-13,?的项?如果是,是第几项?

  在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.

  例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 是一个实际建模问题

  建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

  这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。

  设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  目的:对学生加强建模思想训练。

  3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结(由学生总结这节课的收获)

  1.等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2.等差数列的通项公式 an= a1+(n-1) d会知三求一

  3.用“数学建模”思想方法解决实际问题

  (六)布置作业

  必做题:课本P114 习题3.2第2,6 题

  选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。

  (目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  五、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高中数学说课稿8

各位老师:

  大家好!我叫张西元。我说课的题目是《系统抽样》,内容选自于苏教版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,它也是“统计学”的重要组成部分,通过对系统抽样的学习,更加突出统计在日常生活中的应用,体现它在中学数学中的地位。

  2 教学的重点和难点

  重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。难点:当 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。

  二、教学目标分析

  1.知识与技能目标:

  (1)正确理解系统抽样的概念;

  (2)掌握系统抽样的一般步骤;

  (3)正确理解系统抽样与简单随机抽样的关系;

  2、过程与方法目标:

  通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法高考资源

  3、情感态度与价值观目标:

  通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系

  三、教学方法与手段分析

  1.教学方法:为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学。

  2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

  四、教学过程分析

  (一)新课引入

  1、复习提问:

  (1)什么是简单随机抽样?有哪两种方法?

  (2)抽签法与随机数表法的一般步骤是什么?

  (3)简单随机抽样应注意哪两个原则?

  (4)什么样的总体适合简单随机抽样?为什么?

  [设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础

  2、实例探究

  实例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?

  当总体数量较多时,应当如何抽取?结合具体事例探究问题,设计你的抽取样本的方法。抽取的样本公平性与代表性如何?学生自主探究后小组讨论回答。

  [设计意图]通过设置问题情境,让学生参与问题解决的全过程,引导学生探究发现新知识新方法,完成从总体中抽取样本,并发现“等距抽样”的特性,从而形成感性的系统抽样的概念与方法。这样做既充分体现学生的主体地位和教师的主导作用,同时也较好地贯彻新课程所倡导“自主探究、合作交流”的学习方式。

  (二)新课讲授

  1、系统抽样的'概念方法步骤

  (学生阅读课本上的内容,教师引导学生总结归纳得出“系统抽样”的概念,并点明课题)

  [设计意图]经历实例探究过程,学生对系统抽样的概念方法步骤应有大致了解,辅以教师引导,从具体到一般,本节新课题的学习便水到渠成。

  2、典型例题精析

  例1、某校高中三年级的300名学生已经编号为1,2,……,300,为了了解学生的学习情况,要按10%的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程。

  (教师题意分析,引导学生应用新知识新方法,学生分析思考,探究解题,小组讨论后口述解题过程)

  [设计意图]实例巩固,在得出新课的有关知识之后,再次让学生在解决实际问题的过程中,进一步理解掌握系统抽样的方法步骤,达到学以致用的技能,培养“学数学,用数学”的意识。

  例2、某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。

  [设计意图]当 不是整数时,设置本题让学生尝试回答,并形成一般思路与方法。

  (三) 练习巩固

  1、将全班学生按男女生交替排成一路纵队,用掷骰的方法在前6名学生中任选一名,用 表示该名学生在队列中的序号,将队列中序号为 ,(k=1,2,3,…)的学生抽出作为样本,这种抽样方法叫做系统抽样吗?为什么?其样本的代表性与公平性如何?

  2、若按体重大小次序排成一路纵队呢?

  [设计意图]配合课本第60页“边空”问题:“请将这种抽样方法与简单随机抽样做一个比较,你认为系统抽样能提高样本的代表性吗?为什么?”,帮助理解个体编号具有某种周期性时,样本代表性较差的特点。同时分析系统抽样的优点与缺点。

  (四)回顾小结

  1、师生共同回顾系统抽样的概念方法与步骤

  2、与简单随机抽样比较,系统抽样适合怎样的总体情况?

  3、当 不是整数时,一般步骤是什么?此时样本的公平性与代表性如何?

  (五)布置作业

  课本第61页的练习第1,2,3题

  设计意图:课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿9

  数学:人教A版必修3第二章第三节《变量之间的相关关系》说课稿各位老师:

  大家好!我叫***,来自**。我说课的题目是《变量之间的相关关系》,内容选自于高中教材新课程人教A版必修3第二章第三节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  本章我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量的线性相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.

  2.教学的重点和难点

  重点:①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;

  ②利用散点图直观认识两个变量之间的线性关系;

  难点:①变量之间相关关系的理解;②作散点图和理解两个变量的正相关和负相关

  二、教学目标分析

  1.知识与技能目标

  通过收集现实问题中两个有关联变量的数据认识变量间的相关关系

  2、过程与方法目标:

  明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.

  3、情感态度与价值观目标:

  通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想。

  三、教学方法与手段分析

  1.教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。

  2。教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。

  四、教学过程分析

  ㈠问题引出:

  请同学们如实填写下表(在空格中打“√”)

  然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。

  根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:

  物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还

  有其它因素,如图所示(幻灯片给出):

  因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。

  「设计意图」通过对身边事例的分析,引出我们今天将要学习的主要内容,由此可以激起学

  生们的学习兴趣,为接下来的学习打下良好的基础。

  ㈡探究新知

  ⒈概念形成

  教师提问:“像刚才这种情况在现实生活中是否还有?”学生们思考之后,请几位同学就提出的问题作出回答。老师就举出的例子,引导学生作出分析,然后由老师总结得出相关关系的概念。[两个变量之间的'关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。]

  「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。

  ⒉探究线性相关关系和其他相关关系

  「课件展示」

  例1在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:

  问题:针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?

  [教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:(幻灯片给出)

  ①如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);②如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);③如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。

  「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律。

  下面我们用TI图形计算器作出这两个变量的散点图。

  学生实验:先把数据中成对出现的两个数分别作为横坐标、纵坐标,把数据输入到表格当中(第一列横坐标、第二列纵坐标);然后,用TI图形计算器作散点图:

  [引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。]

  「设计意图」通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系。为后面回归直线和回归直线方程的学习做好铺垫。

  「课件展示」四组数据,请学生作出散点图,并观察每组数据的特点。

  根据四组数据,学生作出四个散点图。

  通过学生讨论、交流、用TI图形计算器展示、对比自己作出的散点图,我们引出线性相关关系,正负相关关系的概念。

  「设计意图」及时巩固知识,学生通过亲自动手作散点图,并交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。

  ㈢例题讲解,深化认识

  「课件展示」

  例2一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。为了对这个问题进行调查,我们收集了北京市某中学20xx年高三年级96名学生的身高与右手一拃长的数据如下表。

  (1)根据上表中的数据,制成散点图。你能从散点图中发现身高与右手一拃长之间的近似关系吗?

  (2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。

  (3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?

  「设计意图」这个例子很容易激起学生们的学习兴趣,由此可达到更好的教学效果。通过对这道题的解答,使对前面知识的认识更加牢固。

  ㈣反思小结、培养能力

  ⑴变量间相关关系、线性关系和正负相关关系

  ⑵如何做散点图

  「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力

  ㈤课后作业,自主学习

  习题2.31、2

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿10

  一、说教材:

  1、地位、作用和特点:

  《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

  本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以

  是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是

  特点之二是: 。

  教学目标:

  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

  (1)知识目标:A、B、C

  (2)能力目标:A、B、C

  (3)德育目标:A、B

  教学的重点和难点:

  (1)教学重点:

  (2)教学难点:

  二、说教法:

  基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

  导入新课 新课教学

  反馈发展

  三、说学法:

  学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的',是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

  1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

  本节教师通过列举具体事例来进行分析,归纳出 ,并依

  据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

  2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

  演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

  3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

  4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

  四、教学过程:

  (一)、课题引入:

  教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

  (二)、新课教学:

  1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

  2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

  (三)、实施反馈:

  1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

  2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

  五、板书设计:

  在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

  六、说课综述:

  以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对

  的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

  总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿11

  【一】教学背景分析

  1。教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。

  2。学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3。教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题。

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识。

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣。

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4。 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用。

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题。

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  好学教育:

  【二】教法学法分析

  1。教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。

  2。学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图。

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。

  (二)深入探究——获得新知

  问题二 1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2。如果圆心在,半径为时又如何呢?

  好学教育:

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。

  (三)应用举例——巩固提高

  I。直接应用 内化新知

  问题三 1。写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点。

  2。写出圆的圆心坐标和半径。

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的'标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

  II。灵活应用 提升能力

  问题四 1。求以点为圆心,并且和直线相切的圆的方程。

  2。求过点,圆心在直线上且与轴相切的圆的方程。

  3。已知圆的方程为,求过圆上一点的切线方程。

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

  III。实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

  好学教育:

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

  (四)反馈训练——形成方法

  问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。

  2。求圆过点的切线方程。

  3。求圆过点的切线方程。

  接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

  (五)小结反思——拓展引申

  1。课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:。

  ②已知圆的方程是,经过圆上一点的切线的方程是:。

  2。分层作业

  (A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

  3。激发新疑

  问题七 1。把圆的标准方程展开后是什么形式?

  2。方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  好学教育:

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

高中数学说课稿12

  尊敬的各位考官,大家好,我是今天的X号考生,今天我说课的题目是《分层抽样》。

  新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。《分层抽样》是人教A版必修3第二章第一节的第三小节,本节课的内容是对分层抽样进行探讨。本小节通过具体问题情境引出分层抽样的抽样方法,并对它的概念、特点和步骤进行了探讨。本节内容是第一节随机抽样方法的扩充,这也为后面学习用样本估计总体奠定基础。学习本节课将会更好的提高学生解决生活实际问题的能力。

  二、说学情

  合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。本阶段的学生是高中生,他们具有了自主探索学习的能力,同时观察能力、总结能力、归纳能力、类比能力、抽象能力等已经发展的比较成熟,但本阶段的学生容易脱离生活实际进行机械的学习,所以在教学中老师一定要凸显学生的自主性,可以将更多的活动交给学生进行探究,在探究过程中继续提高学生的各方面能力。在学习本节知识之前,学生已经具备了统计的一些基础知识,但是对统计具体的抽样方法没有系统的学习,故本节课的学习应该站在学生已有经验的基础上进行教学,帮助学生提高数学的应用能力。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  了解随机抽样中的分层抽样的特点和适用情况,并会用分层抽样解决实际问题。

  (二)过程与方法

  经历分层抽样的特点的探索过程,提升概括能力和应用能力。

  (三)情感、态度与价值观

  在探索的过程中,学习如何处理数据,运用所学知识和方法解决实际问题,体会数学与生活的紧密联系。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:分层抽样的特点及步骤。难点:分层抽样特点的探究过程。

  五、说教法和学法

  依据新课程改革精神与学生认知发展现状,突破难点有效实现知识的巩固,我将采用讲授法、探究法、练习法等教学方法,并在教学过程中有意识的培养学生的合作探究能力,自主探究能力,使之在真正意义上成为学会学习的人。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

  (一)导入新课

  首先是导入环节,我会直接让学生思考:如果要调查某校高一学生的平均身高应该怎样调查?

  学生根据生活经验能够知道:男生女生身高有很大差别,简单随机抽样和系统抽样都不能够使样本具有代表性。

  接下来,我会根据学生的疑惑进行讲解:选择抽样方法之前,充分利用事先对总体情况的已有了解是非常重要的,并明确用新的抽样方法——分层抽样来解决这个问题。

  通过生活实例来导入新课,一方面能够调动学生的'积极性,另一方面也能够降低数学的难度,便于学生的理解。

  (二)讲解新知

  接下来是新课讲授环节,我将分为三部分,分别为分层抽样的探究、分层抽样的概念及步骤、三种抽样方法的辨析。

  首先是第一部分探索分层抽样。在这里我会出示书上的问题情境:某地区有高中生2400人,初中生10900人,小学生11000人。此地区教育部门为了了解本地区中小学生的近视情况及其形成的原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?并提出问题:你认为哪些因素可能影响学生的视力?设计抽样方法时需要考虑这些因素吗?学生可能回答:不同年龄阶段的近视情况可能存在明显差异,三个部分的人数相差较大,我们需要考虑到三个年龄段各自的情况。在此先让学生感知用分层抽样的具体情境,为后面在具体情境中探究分层抽样的特点和步骤奠定基础。

  我会向学生提问:简单随机抽样、系统抽样和分层抽样各有其特点和适用范围,请对这三种抽样方法进行比较,说说它们各自的优点和缺点。

  通过这样的环节,加深学生对三种抽样方法的理解。

  我之所以设置这样由浅入深、层层递进的问题,是为了符合学生的接受水平,同时在学习的过程中也能够体现学生的主体性。

  (三)课堂练习

  当然光得出结论还是不够的,作为一节数学课要及时对知识进行应用。我设计了如下课堂练习:

  练习:某地区中小学生人数的分布情况如下表所示(单位:人)

高中数学说课稿13

  课题:函数的单调性

  教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)

  授课教师:北京景山学校许云尧

  【教学目标】

  1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.

  2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

  3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.

  【教学重点】函数单调性的概念、判断及证明.

  【教学难点】根据定义证明函数的单调性.

  【教学方法】教师启发讲授,学生探究学习.

  【教学手段】计算机、投影仪.

  【教学过程】

  一、创设情境,引入课题

  为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了xxxx年到xxxx年每年这一天的天气情况,下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.

  引导学生识图,捕捉信息,启发学生思考.

  问题:观察图形,能得到什么信息?

  预案:

  (1)当天的最高温度、最低温度以及达到的时刻;

  (2)在某时刻的温度;

  (3)某些时段温度升高,某些时段温度降低.

  教师指出:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

  问题:还能举出生活中其他的数据变化情况吗?

  预案:水位高低、降雨量、燃油价格、股票价格等.

  归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大还是变小.

  〖设计意图〗由生活情境引入新课,激发兴趣.

  二、归纳探索,形成概念

  对于自变量变化时,函数值是变大还是变小,是函数的重要性质,称为函数的单调性,同学们在初中对函数的这种性质就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.

  1.借助图象,直观感知

  问题1:分别作出函数的图象,并且观察自变量变化时,函数值的变化规律?

  预案:

  (1)函数,在整个定义域内y随x的增大而增大;函数,在整个定义域内y随x的增大而减小.

  (2)函数,在上y随x的增大而增大,在上y随x的增大而减小.

  (3)函数,在上y随x的增大而减小,在上y随x的增大而减小.

  引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

  问题2:能不能根据自己的理解说说什么是增函数、减函数吗?

  预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.

  教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.

  〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.

  2.抽象思维,形成概念

  问题1:如图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?

  学生的困难是难以确定分界点的确切位置.

  通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

  〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.

  问题2:如何从解析式的'角度说明在上为增函数?

  预案:(1)在给定区间内取两个数,例如2和3,因为22<32,所以在上为增函数.

  (2)仿(1),取多组数值验证均满足,所以在为增函数.

  (3)任取,因为,即,所以在上为增函数.

  对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.

  〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习做好铺垫.

  问题3:你能用准确的数学符号语言表述出增函数的定义吗?

  师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.

  (1)板书定义

  (2)巩固概念

  三、掌握证法,适当延展

  例1证明函数在上是增函数.

  1.分析解决问题

  针对学生可能出现的问题,组织学生讨论、交流.

  2.归纳解题步骤

  引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.

  练习:证明函数在上是增函数.

  问题:除了用定义外,如果证得对任意的,且有,能断定函数在区间上是增函数吗?

  引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.

  〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.了解等价形式进一步发展可以得到导数法,为今后用导数方法研究函数单调性埋下伏笔.

  四、归纳小结,提高认识

  学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

  1.小结

  (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.

  (2)证明方法和步骤:设元、作差、变形、断号、定论.

  (3)数学思想方法:数形结合.

  2.作业

  书面作业:课本第60页习题2.3第4,5,6题.

  课后探究:研究函数的单调性.

高中数学说课稿14

  一、背景分析

  1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

  教学重点:充分条件、必要条件和充要条件三个概念的定义。

  2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

  教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。

  教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。

  二、教学目标设计:

  (一)知识目标:

  1、正确理解充分条件、必要条件、充要条件三个概念。

  2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

  (二)能力目标:

  1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

  2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

  (三)情感目标:

  1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

  2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。

  3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。

  三、教学结构设计:

  数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的`实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。

  整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈

  整个教学设计的主要特色:

  (1)由生活事例引出课题;

  (2)采用开放式教学模式;

  (3)扩展例题是分析生活中的名言名句,又将数学融入生活中。

  努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。

  四、教学媒体设计:

  本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。

  五、教学过程设计:

  第一,创设情境,激发兴趣,引出课题:

  考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。

  我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。

  第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。

  用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。

  第二,引导学生分析实例,给出定义。

  在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。

  得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。

  还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。

  当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。

高中数学说课稿15

  一、教材分析

  1.本节课内容在整个教材中的地位和作用

  概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  2.教学目标定位

  根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

  (1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

  (2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

  (3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  3.教学重难点

  重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

  二、教法学法分析

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

  为此,我设计了5个环节:

  ①创设情景——引入新课;

  ②交流探究——发现规律;

  ③启发引导——形成结论;

  ④训练小结——深化巩固;

  ⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

  三、教学过程分析

  1.创设情景—引入新课

  教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

  由浅入深,下面让学生画y=2x,y=2(x+1)与y=2(x+1)+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

  2.探究交流—发现规律

  从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x与y=2x+4x-1的'图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax+bx+c,先将其化成y=a(x+h)+k的形式,从而判断出y=ax+bx+c的图像是如何由y=ax变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

  3.启发引导—形成结论

  前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。

  4.练习小结——巩固深化

  为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。

  这个过程中会产生学生之间的三次竞争:

  ①看谁解的快、用时最短;

  ②看谁书写的整齐;

  ③看谁做的对。

  这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。

  这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

  5.延伸拓广——提高能力

  课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

【高中数学说课稿】相关文章:

高中数学说课稿01-14

高中数学教学设计12-26

高中数学教学反思06-18

高中数学教学反思11-01

说课稿06-26

高中数学教学计划02-07

最新的说课稿05-16

美术说课稿05-06

《孔乙己》说课稿05-16