《圆的周长》教学设计
作为一名人民教师,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么应当如何写教学设计呢?以下是小编为大家整理的《圆的周长》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆的周长》教学设计1
教学目的
1、理解圆周率的意义。
2、理解周长的概念,并掌握圆周长的计算公式和推导过程。
3、能运用公式求圆的周长或直径、半径。
重点
圆的周长计算公式的推导,能利用公式正确的计算。
难点
深入理解圆周率的意义及圆周长计算公式的推导。
教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格
一、复习导入(4分钟)
(一)出示菜板和圆桌图
师:
1、这两个都是什么平面图形
2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)
3、还有什么不同?(圆的大小不同,圆的半径不同)
4、也可以说是圆的直径不同。
(二)出示图与对话框
师:
1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)
2、问:铁皮的长度实际上就是圆的什么?
预设:
1、圆一周额长度(这个长度就是圆的周长)或
2、圆的周长。
二、新课教授
(一)活动一:摸圆的周长(3分钟)
师:
1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。
2、从哪里开始到哪里结束?
预设:
1、从这个地方开始,也在这里结束。
2、小结:起点和终点是同一点。
3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)
4、围成圆的一周的曲线的长是圆的周长。
(二)活动二:周长的测量(4分钟)
师:
1、曲线图形的.周长你会测量吗?(不会)
2、同方谈论一下,你想要怎样测量。
3、1生说绕绳法。他的方法听懂的举手。
预设:
1、听懂人多,师演示一下。
2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。
师:
1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。
2、教师观察指导。
(三)汇报演示(4分钟)
师:
1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。
2、这个办法有什么缺点?(不精确会产生误差)
3、除了这个方法还有没有其他办法?
预设:
1、生能主动说出。
2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)
3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。
师:
1、生自己操作
2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。
3、测量中英注意什么?有误差吗?听懂的同学举手。
4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)
(四)动图播放绕绳法和滚动法
1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。
2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。
3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)
4、为什么?(圆的大小或圆的半径、直径不一样)
三、猜想并探索(15分钟)
(一)猜想(4分钟)
1、直径不一样周长就不一样,那周长和直径有什么关系呢?
2、你想把周长和直径怎样比?(周长除以直径、周长减直径)
3、可以研究周长和直径吗?(不可以,每依据)
4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)
5、用你想用的方法研究一下周长与直径的关系。
6、生在黑板上记录“周长÷直径”、或“周长减直径”。
(二)探索(8分钟)
1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。
2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。
3、它叫圆周率,读作π,通常计算式取3.14。
(三)公式推导(3分钟)
1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)
2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?
3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)
四、巩固练习(10分钟)
(一)基础题一道
(二)能力提升两道
(三)拓展题一道
五、课后作业布置
《圆的周长》教学设计2
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级上册第三单元《圆》62-64页的内容。
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第三单元62至64页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆的周长的计算公式。
教学准备:一套多媒体课件、若干大小不同的圆片、一把直尺、一根绳子、一个计算器
教学过程:
(一)创设情境,提出问题。
师:同学们,20xx年是中国人扬眉吐气的一年,因为上海世博会的成功举办让我们有足够的理由为之骄傲和自豪。虽然世博会已经于10月31日完美落幕,但是,这场规模空前的盛会却创造了7308万人次参观的新纪录。其中,中国馆是众多展馆中的一朵奇葩,深受游客们的喜爱,它的外观好像古代的一顶帽子,因此又被称为“东方之冠”。此外,城市地球馆也得到了中小学生的青睐。同学们,瞧,这是地球馆中的地球模型,它叫“蓝色星球”。如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?(板书课题:圆的周长)
【设计意图:上海世博会这个情境的创设是为了突破教材,以学生的兴趣作为出发点,使学生对新知识的学习充满了热情和渴望,激发学生的探索欲望,为后面的学习做好铺垫。】
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:既然求大圆的周长没有好办法,那么我们就把小圆片做为研究对象。同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
(2)测量圆的周长。
要求学生先独立思考有几种方法,再尝试用自己喜欢的办法去测量圆的周长。
【设计意图:培养学生养成独立思考的思维习惯,提高学生的动手操作能力。】
2、合作交流
在四人小组内交流方法。
【设计意图:小组合作旨在增强学生的合作意识,在此过程中,通过不断的交流、质疑,实现思想的碰撞与思维方式的互补,也使学生逐渐养成学会倾听的好习惯,并在聆听的过程中学会“取”和“舍”,即学会分析。】
3、汇报展示
学生汇报展示滚动法和绳绕法,教师点评:同学们,刚才有的同学用绳子绕圆片一周,这种方法属于绳绕法。还有的学生把圆片沿直尺滚动一周,这种方法我们称之为滚动法。无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)同学们展示的方法里面一定有你最欣赏的,那么就请大家用你们最欣赏最喜欢的方法同桌合作测量圆的周长,并把测得的数据直接写到圆上。
【设计意图:通过个别学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。】
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么“蓝色星球”最大横截面的周长,再比如赤道的长度,还能用以上这些方法吗?
生:不能。
【设计意图:再次把学生带回课堂伊始的情境中,在质疑中激发学生的学习兴趣,并促使他们产生探究一般方法的迫切愿望。】
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
(2)探讨圆的周长与直径的关系
①小组合作
要求学生以四人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,一人用计算器计算圆的周长与直径的比值,第四个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长直径周长与直径的比值(保留两位小数)
1号圆片
2号圆片
3号圆片
4号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的圆计算出的'周长与直径的比值可能不完全相同,但实际上,这个比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
【设计意图:数学文化的渗透是为了激发学生的爱国情怀,从小培养学生的民族自豪感。】
5、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式: C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看“蓝色星球”吧!已知“蓝色星球”最大的横截面的直径是32米,如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
【设计意图:再次回到蓝色星球的情境中,运用新的知识解决问题,首尾呼应,使整节课完整而有序。】
(三)巩固新知,解决问题
1、世博会不仅汇聚了各具特色的展馆,还有一些纪念品也给游客留下了深刻的印象,比如这款金镶玉挂件,其中玉的半径是1.5厘米,如果在玉的一周镶一层金边,那么需要多长的金边?
2、菲利斯大转盘每节车厢旋转一周大约是251.2米,那么它的直径是多少米?
3、课件上所展示的是世博会众多花圃中的一个,如果给这个花圃加上栅栏,需要几米长的栅栏?
【设计意图:这三道习题是从基础练到拓展练的跨越,让学生在掌握了新内容的基础上,用所学的知识来解决生活当中的实际问题,培养学生的应用意识。】
结束语:同学们,虽然我们没有以设计者的身份参与到世博会的建设中,但是我们可以做自己人生的设计师,去建设属于你们的美丽新世界。
板书设计:
圆的周长
化曲为直
圆的周长=直径×圆周率 π≈3.14
C=πd或C=2πr
课后反思:
本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体现在以下四个方面:首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。第三,学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新内容的基础上,解决实际问题,培养学生的应用意识。最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的能力。
《圆的周长》教学设计3
教材分析:
《圆的周长》是六年级数学上册第一单元的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
本节课是在学生掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,知道半径,直径的关系并且会画圆,能测量出圆的直径的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,应从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学目标:
1、知识与技能目标:使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、过程与方法目标:通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法。
3、情感、态度与价值观目标:通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教学重点:推导圆的周长的计算公式。
教学难点:理解圆周率的意义。
教学过程:
一、创设情境 导入新课
在动物王国里,两只小蚂蚁正在进行赛跑,甲乙连只蚂蚁分别沿着正方形和圆形跑一圈,谁跑的路程长?为什么?
圆的知识系列微课(四)《圆的周长》教学设计
甲蚂蚁跑的路程:4×2=8(厘米)
要求乙蚂蚁跑的路程,就要求出圆的周长。
从图上可以看出:圆的周长就是圆一周曲线的`长度。这节课我们就来研究圆的周长。
二、实践操作 探究新知
1、测量圆的周长
怎样测量圆的周长呢?
方法一 绳测法:用绳子绕圆一周,测出绳子的长度。
方法二 滚测法:把圆在直尺上滚动一周,做上记号,量出圆的周长。
利用课件展示两种测量方法。
小结;无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。
2、探究周长与直径的关系:
(1)猜想:圆的周长与什么有关呢?
(2)测量圆的周长与直径,并填表
周长
直径
周长与直径的比值(保留两位小数)
1号圆片
2号圆片
3号圆片
(3)观察表格:你发现了什么?
圆的周长总是直径的三倍多一些。
(4)介绍圆周率:圆的周长与直径的比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(5)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】
3、推倒圆的周长计算公式:
刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
用字母表示圆的周长为; C=π或 C=2πr
三、实际应用 解决问题
乙蚂蚁爬过的路程为:3.14 ×2=6.28(cm)
8cm﹥6.28
甲蚂蚁爬过的路程长。
四、回顾全课 归纳总结
这节课你有什么收获?
五、板书设计:
圆的周长
化曲为直
圆的周长=直径×圆周率 π≈3.14
C=πd或C=2πr
《圆的周长》教学设计4
教具、学具准备:
多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。
教学过程:
一、 认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?
(生齐鼓掌!)
师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?
(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?
(板书课题:圆的周长)
(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
二.测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)
(2)师:除此以外,还有别的方法吗?
方法二:把圆放在直尺上滚动一周。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
三、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?
(圆的周长与直径有关系。)
师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。
(生实际测量、计算、填表)
3.展示汇报
师:哪一个小组愿意来汇报你们的数据。
师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)
师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?
4.揭示规律
师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!
屏幕出示图3:
师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?
(圆的周长总是它直径的3倍多一些)
师:这就是圆的周长与直径的关系。这个表示3倍多一些的`数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。
5.介绍小知识。
师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)
五、揭示圆的周长计算公式
师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?
(测量出它的直径)
师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)
师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)
(板书:C=πd)
师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?
(板书:C=2πr)
练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?
学生独立计算。汇报:唐老鸭跑的路程更远。
六、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(课件出示)
(1)学生独立完成,汇报,弄清列式的依据。
(2)小结:已知直径求周长可直接套用公式。
2.通过媒体演示指导学生完成"做一做"作业。
饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?
小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.
五、总结,质疑,看书内化。
师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。
六、巩固练习。
1.判断。
(1)圆周率就是圆的周长和直径的比值。
(2)π=3.14。
(3)半径的长短决定圆周长的大小。
(4)同圆中,周长是直径的π倍。
2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?
3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?
4.求半圆的周长:d=6厘米(图略)
《圆的周长》教学设计5
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:求圆的直径和半径。
教学难点:灵活运用公式求圆的直径和半径。
教学过程:
一、复习。
1、口答。
4π2π5π10π8π
2、求出下面各圆的周长。
4厘米
0
2厘米
0
C=πdc=2πr
3.14×22×3.14×4
=6.28(厘米)=8×3.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道Π表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=πdC=2πr
(3)根据上两个公式,你能知道:
直径=周长÷圆周率半径=周长÷(圆周率×2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77m求:d=?
解:设直径是x米。
3.77÷3.143.14x=3.77
≈1.2(米)x=3.77÷3.14
x≈1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米R=c÷(2Π)求:r=?
解:设半径为x米。
3.14×2x=1.21.2÷2÷3.14
6.28x=1.2=0.191
x=0.191≈0.19(米)
x≈0.19
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。
D=8厘米
⑴3.14×8
⑵3.14×8×2
⑶3.14×8÷2+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?
20×2×3.14=125.6(厘米)
45分钟走了多少厘米?125.6×=94.2(厘米)
5厘米
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
一、作业。P65-66第3、6、7、9题
教学追记:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的`固定值“π”是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“π”的含义就理解得特别透彻,也学得有兴趣。
《圆的周长》教学设计6
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
5、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、问题导入
同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。
二、探究新知
看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的周长和什么有关?)
同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。
请看大屏幕,这里有一个圆,那位同学能上台指一指它的.周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的周长。请同学们把圆的周长的概念默记两遍吧。
请同学们拿出你手边的圆,同桌互相指一指它的周长吧。
三、合作探究
老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!
好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。
老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。
四、找出关联
同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。
我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?
五、合作解疑
请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。
好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)
好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。
请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。
六、知识渗透
说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。
七、公式推导
既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。
请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。
八、解决问题
1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。
2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)
这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。
3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?
《圆的周长》教学设计7
教学内容:
冀教版《数学》六年级上册第六单元一课时
教学目标:
1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。
2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。
3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。
教学重点:
能利用公式正确计算圆的周长。
教学难点:
理解圆周率的意义,圆的周长计算公式的推导。
教学准备:
课件,直径不同的圆,细绳,软皮尺,直尺,计算器。
教学过程:
一、导入
师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)
师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”
1、什么叫长方形和正方形的周长?
2、长方形和正方形的周长和什么有关?
学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正
方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。
(课件出示圆形)
师:“你对圆形有哪些了解?”
学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。
师:那什么是圆的周长呢?
生:围成圆一圈弧线的长度总和叫圆的周长。
师:那你还想知道哪些圆的知识呢?
生:我想知道圆的周长和面积。
师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。
(板书课题)
二、探索新知
1、周长的测量(自主发现、动手操作)
师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的方法最准确?
学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。
2、圆周与直径的探究
师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周
长与什么有关系。生“直径。”
师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。
3、小组合作探究圆周长与直径、半径的关系。
师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。
小组合作要求:
1、利用手中的学具测量物品中圆的周长和它的直径。
2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)
3、观察得到的数据,你发现了什么?
师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。
学生汇报几组数据,教师板书。
师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。
师:打开数学书,我们自学83页知识来了解。
学生自学了解了圆的周长总是直径的.三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。
(板书:圆周率π)课件出示补充祖冲之小知识窗
早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,
C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?
生:在同一个圆里,直径是半径的两倍。
三、实践与应用
1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?
2、求圆的周长
(1)r=6
(2) r=10
(3) d=5
3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。
四、教师小结
《圆的周长》教学设计8
教学目标:
1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。
教学过程
一、情景导入:
师:老师这里有一张图片,同学们想看吗?
师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?
师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?
师:这节课我一起研究圆的周长。
板书课题:圆的周长
二、探究新知:
1、圆的周长含义
师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。
师:围成圆的曲线的长叫做圆的的周长。
2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。
师:谁愿意说说你是怎么测量的?
师:还有不同测量的方法吗?
师多媒体演示。
我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。
我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。
师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。
生:用绳子量出水池的'周长。
师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。
师:有没有比测量更科学、更简便的方法呢?
生:计算
3、探究圆的周长计算方法
①探究圆的周长与直径的倍数关系
师:如何计算圆的周长呢?
师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?
师:计算正方形的周长需要什么条件,怎么计算?
师 :同学们看,计算长方形、正方形的周长都需要一定的条
件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。
师:如果圆的周长与直径有关,又有什么关系呢?
师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。
师:正方形的周长与它的条件边长之间有什么关系。
你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。
这个倍数会是几呢?同学们来猜测一下,这个倍数大于几
生1:大于2;
生2:大于3;
生3:大于4;
师:能说说你是怎样想的?
师:你从图上来看,圆的周长与直径之间的倍数会大于几。
生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。
师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?
生猜并说理由。
师:这个问题有点难,老师来作个辅助图形,请看大屏幕。
(师多媒体演示圆外切正方形)
师:你发现了什么?
生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。
师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?
生:计算。
师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。
下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)
师:一定注意要测量准确,减少误差。
(集体汇报交流)
师:哪个小组愿意把你们的计算结果给大家展示一下。
(生说并展示结果)
师:请同学们来观察这些圆的周长除以直径的商,有什么特点。
生:都比3大一点。
师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。
师:会读吗?(板书pài)
师:一起读,用手在桌子上写几遍。
师:会写了吗?
师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?
生:测量不准确。
师:很会分析问题,我们计算出的这些商都不一样,是因为测量有
误差造成的。
师:老师这里有关于圆周率的历史资料,同学们想看吗?
师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)
师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?
师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书C=πd)
师:如果知道了圆的半径,我们还可以怎样计算圆的周长?
(板书:C=2πd)
师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。
由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)
三、实践应用:
师:现在我们来解决几个问题好吗?
1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。
2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)
3、判断题
4、思考题
四、小结。
《圆的周长》教学设计9
一、教学内容:圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.
2.培养学生的观察、比较、分析、综合及动手操作能力.
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.
4.结合圆周率的学习,对学生进行爱国主义教育.
三、教学重点:
1.理解圆周率的意义.
2.推导出圆的周长的计算公式并能够正确计算.
四、教学难点:理解圆周率的意义.
五、教学过程:
一、 创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长.
3、师:今天我们就来研究圆的周长。并出示课题
二、引导探究,学习新知
(一)推导圆的周长公式
1.学生讨论
(1)正方形的周长跟谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2.猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?
3.动手操作
(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。
师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的.比值。
师:看哪一组配合好,速度快,较精确。开始!
(2)整理并填写表格。单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(3)汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?
(三)认识圆周率、介绍祖冲之
1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.
π≈3.14
2.介绍祖冲之
(四)归纳圆的周长公式
1.怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:c=πd
2.圆的周长还可以怎样求?由于d=2r 则:c=2πr
师板书:c=2πr
师问:圆的周长分别是直径与半径的几倍?
三、巩固应用,强化新知
(1)求下面各圆的周长.
1.d=2米 2.d=1.5厘米
(2)求下面各圆的周长.
1.r=6分米 2.r=1.5厘米
(二)判断题
1.π=3.14 ( )
2.计算圆的周长必须知道圆的直径. ( )
3.只要知道圆的半径或直径,就可以求圆的周长. ( )
(三)选择题
1.较大的圆的圆周率( )较小的圆的圆周率.
a 大于 b 小于 c 等于
2.半圆的周长( )圆周长.
a 大于 b 小于 c 等于
(四)课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
(五)实践操作
请同学们,画一个周长是12.56厘米的圆,
先以小组为单位讨论:画多大?如何画?再操作。
四、课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
《圆的周长》教学设计10
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的`书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
《圆的周长》教学设计11
教材版本:《义务教育课程标准实验教科书 数学》
教学内容:六年级上册第四单元第57页
教材分析:圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。
学情分析:学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。
教学目标:
1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学要点分析:
教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。
教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。
教学过程:
一、开门见山,揭示课题
师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)
生:圆形。
师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)
(评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)
二、探索交流,解决问题
1、圆的周长含义
师:请大家想一想,什么是圆的周长?谁能指着圆说一说。
生:圆一周的长就是圆的周长。
师:(指圆)我们把围成圆的曲线的长叫做圆的周长。
2、自主探究求圆的周长的方法
师:怎样求圆的周长呢?下面我们借助学具圆片来研究。
大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。
(小组活动,教师巡视。)
师:哪个小组先来介绍你们的方法?
生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。
师:还有那个小组也用到了这个方法?
(全体学生都举手)
师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?
生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。
师:这个办法怎么样?
生:很好。
师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:
多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。
还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。
师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?
生:直线。
师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)
(评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)
师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的.摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?
生:不能。
师:为什么呢?
生1:我们没有那么长的绳子,更不可能用滚动的方法。
生2:就算我们有足够长的绳子,可是量起来太困难。
师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?
生:计算。
(评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)
3.探究圆的周长计算公式
(1)探究发现圆周率的取值范围
师:怎样计算圆的周长呢?
师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?
生:直径和半径。
师:能说说你的理由吗?
生:因为圆的直径和半径决定圆的大小。
师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?
(大多数学生茫然,教师加以引导)
师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?
生:倍数关系。
师:请大家观察,你认为圆的周长是直径的几倍?
生:圆的周长是直径的2倍多。
师:能说说你是怎样想的?
师指图继续让生说。
生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。
师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?
(评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的联系,促成了迁移。)
生猜并说理由。
师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?
(老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)
师:我发现每个小组都有自己的想法了,哪个小组先来说一说?
生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。
生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。
师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?
生:想。
师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?
生:六份
师:圆周角平均分成了6份,那这一个角是多少度呢?
生:60度。
师:这一个三角形是什么三角形?(课件闪烁一个三角形)
生:等边三角形。
师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)
生:弧长。
师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?
,《圆的周长》教学实录与评析
生:6倍多。
师:比圆直径的几倍多?
生:3倍多。
师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?
生:我们可以量出圆的周长和直径,用周长除以直径,算一算。
(评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题—形成假设—猜想推理—形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)
(2)计算圆周率的近似值
师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。
(小组活动,教师巡视。)
(各小组完成后,老师把各组的表格依次放在展台上。)
师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?
生:都比3大。
生:圆的周长除以直径的商都是3点几。
生:都在3.2左右。(板书:3.2倍左右)
师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。
师:一起读。(板书pài)
师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?
生:测量不准确,有误差。
师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。
(3)介绍圆周率的历史
师:有关圆周率的历史,你想了解一下吗?
(多媒体演示,教师介绍。)
师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的3倍多。和我们刚才测量计算的结果是一样的。
魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。
继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?
生:祖冲之。
师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?
生:祖冲之很伟大。
师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。
师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。
师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。
(评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)
(4)推导圆周长的计算公式
师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书:C=πd)
师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?
(板书:C=2πr)
师:要计算圆的周长,只要知道什么就可以了?
生:直径或半径。
师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)
(评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)
三、实践应用,内化提高
师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?
(学生独立尝试,教师巡视。)
师:谁来介绍你的计算方法?
生读题,集体订正。
(评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)
四、回顾整理,反思提升
师:今天这节课你有什么收获?
生1:我学会了计算圆的周长。
生2:我了解了圆周率的历史。
师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。
(评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)
创新特色:
1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。
数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。
2、促进知识的迁移
“为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。
3、把数学教学看作一个整体。
本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。
3、充实、完善了教学目标。
把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。
《圆的周长》教学设计12
课时目标:
⒈理解圆的周长和圆周率的含义,初步理解和掌握圆的周长的计算公式,并能正确计算圆的周长。
⒉培养学生观察比较、分析判断及动手操作的能力,从而发展学生的空间观念。
⒊结合祖冲之的资料,对学生进行爱国主义的教育。
重点:
理解并掌握圆的周长的计算方法
突破方法:
让学生利用实验的手段,通过测量、计算、观察发现圆的周长和直径的关系,理解并掌握圆的周长的计算方法
难点:
理解圆周率的意义
突破方法:
观察交流实验报告单,发现规律,理解圆周率的意义
教学过程:
一、复习:
1、老师在黑板上画了一个长方形和一个正方形,谁能用红笔描出它的周长并写出字母表示其周长公式。
2、当你看到这两个周长公式时,你们发现了什么?
生:长方形的周长与长和宽的和有倍数关系
正方形的周长与边长有倍数关系
3、那就说明我们研究长方形或正方形的周长时,主要考虑两个方面:
它与什么有关?有什么样的关系?
今天我们就带着这样的.问题来学习圆的周长(板书课题)
二、新授:
1、师出示一个圆,请大家看,老师手里有一个圆,你知道圆的周长是指的哪部分吗?
谁来动手摸一摸,指一指
那么什么是圆的周长呢?圆是由什么线围成的?课件展示什么是圆的周长。
板书:围成圆的曲线的长是圆的周长
2、今天老师带来一些圆,请你们各个组来测量这些圆的周长,不管用什么样的方法,只要能够得到圆的周长就可以了,请你们一律用厘米作单位,我们每个小组桌上都有一张小表格,请你们将测得的周长填在第一栏里,请小组分工合作。
师:你们是怎样测得圆的周长呢?哪位同学到前面来给大家讲一讲,同时演示。
(一) 用卷尺直接绕圆一圈(卷尺与起点重合)
(二) 把圆放在直尺上滚一圈得到圆的周长.(在圆上固定一点,在尺子上滚动)
(三) 拿线绕圆一周,再将线拉直,量出线的长度就是圆的周长.
(学生在演示时,老师主动说我来帮你,你也是在小组合作中完成的)
那刚才我们同学不管是通过绳子还是把圆放在尺上滚得到圆的周长,最后都是测量一条直的线段的长,但我们开始已经知道圆的周长是一条曲线的长,这就说明我们是把曲线化为一条直线段来测量,那是不是所有的圆都可以用这个方法来测量它的周长呢?想一想,为什么?
(生:不行,有的圆特别小,不好滚动,有些特别大)
师:如我们转动的吊扇、转动的摩天轮,它在转动时也是形成一个圆,但这个圆能通过刚才的方法来测量它的周长呢?(不能直接测量)那看来,我们刚才所有的测量周长的方法都有一定的局限性。
看来,我们也需要像研究长方形和正方形一样来找到一种作为普遍的公式能够直接计算周长,那现在大家想一个问题:圆的周长与什么有关(请大家认真看屏幕)通过观察这三幅图,你发现了什么?
(直径越长,周长越长)
看来直径确实能决定圆的周长,是这样吗?
请同学们继续刚才的测量,先前已经得到圆的周长,接下来我们来测量圆的直径,找出圆的周长和直径的关系。
请同学们继续合作,把桌上的表格填好(注意,周长除以直径,如果除不尽时保留两位小数。)
(有人测量、有人计算、有人填表,分工非常明确)
填完之后,小组内同学互相说说,你们发现了什么?
哪个小组最快填完,老师把这一组的结果填在黑板上。算完之后,请你们仔细看看,有没有算得跟这个组不一样的。(生:有)
师:这是什么原因呢?是我们计算不对吗,还是别的原因呢?(误差)那你们小组讨论出的结论是周长与直径有什么关系呢?
(生:每个圆的周长都是它直径的三倍多一些)
是不是所有的圆,它的周长都是直径的三倍多呢?
请大家看大屏幕,这是我们三个直径不同的圆,让我们看看它们是不是也有我们同学刚才所说的倍数关系呢?
(动画的形式,演示圆的周长与直径的倍数关系)
看来,我们同学得到的结论是正确的,确实每个圆的周长都是它直径的三倍多一些,说明圆的周长与直径确实有倍数关系,我们把这个固定不变的倍数叫做圆周率,用字母“π”表示,(板书)请大家看屏幕,这里是有关于圆周率的介绍(出示课件)
看完这段话,你们有什么感想?(古代有无数的数学家为此付出了很多的心血,为我们古代数学家感到自豪,为我们的民族感到骄傲)
现在请同学们打开数学书第63面中间一段文字,看完之后,还有什么新的收获(还知道关于圆周率的什么知识)圆周率是一个无限不循环小数,在实际应用中一般取它的近似值为3.14。
现在同学们知道怎样来计算圆的周长吗?有公式吗?
如果用C表示圆的周长,就有:
C= πd 或C= 2πr
这两个公式都可以用来计算圆的周长
三、巩固练习
1、求下面各圆的周长:
①直径为6㎝ ②半径为5㎝
2、接下来,咱们去生活中看看,能不能利用我们刚才学到的知识去解决生活中的问题呢?
出示例1:一辆自行车轮子的半径大约是33㎝,这辆自行车轮子转一圈,大约可以走多远?(结果保留整米数)小明家离学校1㎞,骑车从家到学校,轮子大约转了多少圈?
3、判断练习:
(1)只要知道圆的直径或者半径就可以求圆的周长()
(2)π=3.14()
(3)大圆的圆周率比小圆的圆周率大()
(4)圆周率就是圆周长除以直径的商()
(5)圆周长是半径的2π倍 ()
四、总结:这节课我们学习了很多有关圆的周长的知识,那你们说说都有什么收获?
生:答
师:同学们有收获,就是老师最大的收获。
板书: 圆的周长
围成圆一周的曲线的长叫做圆的周长
周长 直径周长/直径的比值 圆周率π
(保留两位小数)
38 12 3.17C= πd
258 3.133倍多一些 或C= 2πr
196 3.17
《圆的周长》教学设计13
一、教学目标:
1.知识目标:在具体的情境中,结合已有的知识经验认识什么是圆的周长。
2.能力目标:通过测量和计算,了解圆的周长与直径的比为定值,推出圆的周长计算公式,并会运用公式解决现实问题。
3.情感目标:在观察、实验、猜想、验证等活动中,渗透解决问题的一般方法,进一步展学生的转化策略和推理能力;结合圆周率的学习,对学生进行爱国主义教育。
二、教学重、难点:
重点:推导并总结出圆周长的计算公式。
难点:深入理解圆周率的意义。
三、教学准备:
电脑课件、一元硬币、茶叶筒或易拉罐、圆形硬板、纸杯、直尺、水彩笔、细线、小组测量记录表、计算器、剪刀、三角板
四、教学过程:
(一)、创设情境,引起猜想:
1.复习长方形、正方形周长公式。讨论正方形周长与其边长的关系:
长方形周长=(长+宽)×2正方形周长=边长×4教学反思:应温故知新,注意知识点掌握的连贯性,同时为讲解圆的周长做铺垫。
2.激发兴趣
出示课件:同学们,我们已经认识了美丽的图形圆,什么是圆的周长?周长和圆的直径有什么关系呢?
(1)我们的村长在卖村里的树的时候,他用手拃一拃树的周长,就能知道树的直径,估计出树的体积,他是怎样算出直径的呢?同学们想知道吗?今天我们就来探究一下,看看会有什么收获。
(2)看这是圜丘坛俗称祭天台,及细观察,共有三层。上层直径30米,中层50米,下层70米。你发现了什么信息?根据这些信息你能提出什么问题?
3、认识圆的周长
圆的周长又指的是什么意思?(围成圆的曲线的长)出示课件
从准备的一元硬币、茶叶筒、易拉罐、纸杯、圆形硬板等物品中找出一个圆形来,并指出这些圆的周长。
4.讨论正方形周长与其边长的关系
(1)根据已学知识总结正方形的周长总是边长的几倍?
出示课件:正方形周长=边长×4
正方形周长÷边长=4(固定值)(2)那么圆的周长与什么有关系呢?
5.讨论圆周长的测量方法
(1)讨论方法:刚才我们已经解决了正方形周长的问题,可以测量再计算;而圆的周长呢?各小组同学选出你手中的一个圆形物品来试一试,测量圆的周长,看看你们有哪些好的方法?
(2)汇报交流总结:
①“绳绕法”——用细线缠绕实物圆一周并打开,然后再把绸带拉直测量长度;
②“滚动法”——把实物圆沿直尺滚动一周,数出直尺上的刻度差
——还可以先用水彩笔在硬币的圆周长上涂上颜色,然后将硬币在纸上沿直尺滚动一周,测量纸上留下的痕迹的长度;
③“剪圆”——先用剪刀沿着纸杯圆口剪下一条,剪得越细越好,
然后测量纸条的长度;
(3)小结各种测量方法:把曲线化成直线进行测量是我们数学中常用的方法。
出示课件
转化曲→
直
(4)创设冲突,体会测量的局限性
刚才大屏幕上圜(yuán)丘坛有三个圆,这三个圆的周长还能用刚才的方法进行实际测量吗?(不能)那怎么办呢?有没有一种更为简单的方法呢?(5)明确课题:
今天这堂课我们就一起来研究圆周长的.计算方法。出示课件:圆周长的计算方法6.合理猜想,强化主体:
(1)我们能不能像求正方形周长那样找到求圆周长的一般方法呢?正方形的周长与它的边长有关,而且周长总是边长的4倍;你认为圆的周长与它的什么有关?(半径、直径)向大家说一说你是怎么想的?(2)正方形的周长总是边长的4倍,再看这幅图,出示小黑板,猜猜看,圆的周长大概应该是直径的几倍?说明道理:(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)(3)小结并继续设疑:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?出示课件:圆周长÷直径=?
老师请各小组讨论:要想研究圆的周长与直径的倍数关系需要做哪些工作?根据学生的回答老师出示探究建议:①测量圆的周长和直径;②记录数据;③进行计算;④得出结论。
(二)实际动手,发现规律:
(1)明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,每组同学可以从桌上物品中选出2-3个圆形进行测量,把数据和结论填入表格里,组长记录并计算,其他组员测量,最终求出一个平均值。
(2)学生动手操作,教师巡视指导。(3)集体反馈数据(选取3~4组实验结果)2.发现规律,初步认识圆周率
(1)看了几组同学的测算结果,你有什么发现?
(2)虽然倍数不大一样,但周长大多数是直径的几倍?刚才同学们已经对大小不同的圆进行了比较准确的测算,能够得出一个什么结论?
出示课件:三倍多一些。 3.介绍祖冲之,认识圆周率
(1)到底是三倍多多少呢?早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,而这个值就是圆周率,知道他叫什么吗?请同学们看一段资料:
出示关于圆周率的资料。
(2)看后激励:同学们今天自己动手也发现了这一规律,老师相信同学当中将来也会产生像祖冲之一样伟大的科学家。(3)了解误差
我们将为我们班有像祖冲之一样伟大的科学家而感到骄傲,可不知同学们想过没有,为什么我们现在的测算结果都不够精确呢?那是因为测量和计算过程中存在着误差:
如:测量误差、读数误差、尺子刻度不一致、细线弹性不一致等等,通过这段文字资料你能确定圆周率的值了吗?圆周率是一个无限不循环小数,用希腊字母π表示,实际计算中π取近似值3.14。
出示课件:圆周率用π表示,π=3.141592653……
实际计算中π≈3.14 4.总结圆周长的计算公式
(1)如果知道圆的直径,你能计算圆的周长吗?追问:那也就是说,圆的周长总是直径的多少倍?(π倍)
出示课件:圆周长÷直径=π(圆周率)
圆周长=直径×圆周率C
=
π d(2)如果知道圆的半径,又该怎样计算圆的周长呢?板书: C
= 2πr (三)、巩固应用,形成能力1.判断
a.圆周率就是圆的周长除以直径所得的商。()b.圆的直径越长,圆周率越大。()c.π=3.14()2.计算:出示课件:分别求d=4厘米、r=1.5分米圆的周长3.解决实际应用
(1)一辆自行车车轮的直径是0.6米。车轮滚动一周,自行车前进多少米?
(2)摩天轮的半径是5米,坐着它转动一周,大约在空中转过多少米?
(3)一个木桩的横截面周长是37.68厘米。它的直径是多少厘米?(四)、课内小结,扎实掌握
(1)通过今天的学习,你有什么收获?
(2)现在知道老村长是怎么求出树的直径了吗?
(五)、课外引申,拓展思维
出示课件:小明的妈妈在自家的墙根下建了一个花坛(如图)。你能计算出花坛的周长吗?
《圆的周长》教学设计14
一、教学内容:
圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
三、教学重点:
1.理解圆周率的意义。
2.推导出圆的周长的计算公式并能够正确计算。
四、教学难点:
理解圆周率的意义。
五、教学过程:
(一)创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长。
3、师:今天我们就来研究圆的周长。并出示课题。
(二)引导探究,学习新知
1.推导圆的周长公式
(1)学生讨论
a.正方形的周长跟什么有关系?有什么关系?
b.你认为圆的周长和什么有关系?
(2)猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?
(3)动手操作
a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
b.汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?
2.认识圆周率、介绍祖冲之
(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14
(2)介绍祖冲之
3.归纳圆的周长公式
(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:C=πd
(2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr
师问:圆的周长分别是直径与半径的几倍?
(三)巩固应用,强化新知
1.求下面各圆的周长。
1)d=2米2)d=1.5厘米
2.求下面各圆的周长。
1)r=6分米2)r=1.5厘米
3.判断题
(1)π=3.14 ( )
(2)计算圆的周长必须知道圆的直径( )
(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )
4.选择题
(1)较大的圆的圆周率( )较小的圆的圆周率。
a大于b小于c等于
(2)半圆的周长( )圆周长。
a大于b小于c等于
5.课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
6.实践操作
请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。
(四)课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
反思:
“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。
1.动手实践,探究圆周长的测量方法。
怎样测量圆的周长呢?首先让学生在教师提供的'学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。
当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。
学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。
2.探究圆周长与直径的关系,寻找圆周长的计算方法。
在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。
学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。
在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。
《圆的周长》教学设计15
【教学资料】
本课选自义务教育课程标准实验教科书五年级(下册)第十单元《圆》。
【教材分析】
这部分资料是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,透过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的潜力,体会数学与现实生活的密切联系。
【教学目标】
1.让学生经历圆周率的探索过程,理解圆周率的好处,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2.培养学生的观察、比较、分析、综合及动手操作潜力,发展学生的空间观念。
3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
【教学重点】
透过多种数学活动推导圆的周长公式,能正确计算圆的周长。
【教学难点】
圆的周长与直径关系的探讨。
【教学准备】
多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。
【教学过程】
一、把准认知冲突,激发学习愿望。
1.谈话:同学们,明白大家都喜欢看《喜羊羊和灰太狼》的动画片,这天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)
2.要想确定它俩究竟谁跑的路程长,可怎样做?(生:先求出正方形和圆形的周长,再进行比较。)
3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)这天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)
(设计意图:《喜羊羊与灰太狼》是当前孩子们最喜闻乐见的动画片。设计两者进行赛跑时生活问题,转化为比较圆的周长和正方形周长的数学问题。创设生动的教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好地展示并便于学生理解圆周长的概念。)
二、经历探究全程,验证猜想发现。
(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。
谈话:那什么是圆的周长呢?(课件出示3个车轮)
2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)
3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)
(设计意图:本环节淡化了对圆周长概念的讲述,以生活中常见的三个车轮为研究的对象,在滚动的过程中具体理解圆周长的含义。并借助观察、比较、合作交流,初步感知到圆的周长与它的直径有关。)
(二)交流测量圆周长的方法:
1.学生拿出课前剪的圆,互相指一指它们的周长。
2.用什么办法测量它们的周长?(同桌交流方法)
3.指名到前面投影上展示测量周长的方法:
①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向那里,圆滚动一周的长就是这个圆的周长。
②绕圈法。明确:线贴紧圆周,把剩余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。
③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。
4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。
5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎样办?引发学生探究圆的周长与直径之间的关系。
(设计意图:精心做好实验准备。为了发散学生的思维,课前让学生准备了软尺,因为软尺既具备了线的特点又兼有尺子的功能,不仅仅能提高实验的速度,而且也能减少实验误差。对学生实验的方法进行深入细致的指导,促使学生有效地进行探究。最后抛出的一个问题也激发了学生进一步探究新方法的欲望。)
(三)认识圆周率。
1.谈话:接下来同学们分4人小组,选取自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)
2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)
3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)
(设计意图:本环节的设计中,教师为学生带给了从事数学活动的时间和空间。在操作前明确操作要求、操作方法以及操作的注意点,然后以小组合作的方式动手实践,探索圆周长和直径之间比值的规律,提示出圆周率的概念,让学生体验到学习数学的乐趣,获得学习体验。)
4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的'周长大约是直径的3倍)
5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)
6.学生说说从资料的介绍中明白了什么?(学生交流自己的学习所得)
7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。期望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。
(设计意图:那里向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学礼貌的发展,体验到人类不断探索的脚步。透过介绍祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时对学生的后续学习也起到了必须的激励作用。)
(四)推导公式
1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎样计算?(生:圆的周长=圆周率×直径)
2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎样表示?
3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎样变换?
4.齐读公式,加深印象。
(设计意图:当学生发现了已知直径求圆周长的方法后,让学生思考还能够已知什么条件来求圆周长,这样透过学生自己总结得出的结论印象更深刻。)
三、刷新应用潜力,总结巩固新知。
1.(课件出示第1题)学生口答两个圆的周长。
2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)透过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)
3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)
4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)
(设计意图:设计有层次的巩固练习,从计算直观的图形的周长到解决实际问题,让学生学以致用,体会到数学知识在生活中的运用价值,进一步激发数学学习的兴趣和爱好。)
四、交流学习收获,课后拓展延伸
1.透过这节课研究圆的周长,你有什么收获?(学生全班交流)
(设计意图:让学生对本节课所学习的知识进行一个系统的回顾和总结,让学生掌握学习方法,感受数学价值,增强学习和发展的自信心。)
2.谈话:此刻如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎样做?(学生独立完成,后全班交流)有没有其它方法?(学生可透过计算解决,也可直接观察两个图比较)
3.师:种种方法都能够帮忙我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:
问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)
【设计意图:让学生利用所学新知去解决课前矛盾,一方面让学生体验到了学习数学知识的价值,另一方面拓展题的创设使得本节课的知识有了一个很好的延续。】
教学反思
一、“情境”与“知识”两条主线相互交融。
结合本节课的教学资料和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们明白,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此十分感兴趣,也有必须的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一齐,构成一个完整的统一体,激发了学生的学习兴趣,时学生用心主动地投入到学习活动中。
二、动手操作让学生亲身经历知识的构成过程。
动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们带给了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选取、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践潜力,获得用心的情感体验。
三、数学阅读让学生感受数学的厚实的文化
在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到必须的激励作用。结合本节课的教学资料,教师向学生介绍了圆周率的有关认识。那里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。
【《圆的周长》教学设计】相关文章:
《圆的周长》教学设计07-03
圆的周长教学设计09-07
圆的周长教学设计05-29
《圆的周长》教学反思05-30
圆的周长教学反思05-11
《圆的周长》数学教学反思10-16
圆的周长教案07-12
《周长的认识》教学设计07-25
《圆的面积》教学设计06-28