正比例教学设计

时间:2024-05-19 13:25:39 教学设计 我要投稿

正比例教学设计

  作为一名老师,就不得不需要编写教学设计,教学设计是一个系统化规划教学系统的过程。一份好的教学设计是什么样子的呢?以下是小编整理的正比例教学设计,仅供参考,希望能够帮助到大家。

正比例教学设计

正比例教学设计1

  教学内容

  教科书第54页例3,练习十二5,6,7题。

  教学目标

  1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

  2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

  3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

  教学重、难点

  运用正比例知识解决简单的实际问题。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、复习引入

  1.判断下面各题中的两种量是不是成正比例?为什么?

  (1)飞机飞行的速度一定,飞行的时间和航程。

  (2)梯形的上底和下底不变,梯形的面积和高。

  (3)一个加数一定,和与另一个加数。

  (4)如果y=3x,y和x。

  2.揭示课题

  教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

  二、合作交流,探索新知

  1.用课件出示例3

  教师:这幅图告诉我们一个什么事情?需要解决什么问题?

  教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

  2.全班交流解答方法

  指导学生思考出:

  (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

  (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的`几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

  (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

  3.尝试用正比例知识解答

  如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

  教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

  (1)题中有哪两种相关联的量?

  (2)题中什么量是不变的?一定的?

  (3)题中这两种相关联的量是什么关系?

  引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

  随学生的回答,教师可同步板书:

  教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

  引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

  教师:同学们会计算吗?把这个比例式计算出来。

  学生解答。

  教师:解答得对不对呢?你准备怎样验算?

  学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  三、课堂活动

  1.出示教科书第49页的例1图和补充条件

  竹竿长(m)26…

  影子长(m)39…

  教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

  教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

  学生独立思考解答,讨论交流。

  2.小结方法

  教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

  (1)设所求问题为x。

  (2)判断题中的两个相关联的量是否成正比例关系。

  (3)列出比例式。

  (4)解比例,验算,写答语。

  四、练习应用

  完成练习十二的5,6,7题。

  五、课堂小结

  这节课我们学习了什么知识?你有什么收获?

正比例教学设计2

  教学目标

  1、知识与技能

  ①理解正比例函数的概念及正比例函数图象特征。

  ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

  2、过程与方法

  ①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

  ②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

  3、情感态度与价值观

  ①结合描点作图培养学生认真细心严谨的学习态度和习惯。

  ②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

  教学重点:

  探索正比例函数图形的形状,会画正比例函数图象。

  教学难点:

  正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合

  教学准备:

  多媒体课件

  教学过程

  一、提出问题,创设情境,激发学生的学习兴趣情境

  1、(1)你知道候鸟吗?

  (2)它们在每年的迁徙中能飞行多远?

  (3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。

  【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。

  二、出示本节课的学习目标

  ①理解正比例函数的概念及正比例函数图象特征。

  ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

  教师用课件展示学习目标,学生齐声朗读,记忆。

  【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。

  三、自学质疑:

  自学课本86——87页,并尝试完成下列问题

  1、写出下列问题中的函数表达式

  (1)圆的周长|随半径r的大小变化而变化

  (2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?

  (3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化

  (4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化

  2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

  【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。

  教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

  教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0?

  上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出)

  做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2

  通过上面的例子,师生共同总结正比例函数须满足下面两个条件:

  1、比例系数不能为0

  2、自变量X的次数是一次的。

  表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。

  (1)正方形的边长为xcm,周长为ycm;

  (2)某人一年内的月平均收入为x元,他这年的总收入为y元;

  (3)一个长方体的长为2cm,宽为,高为xcm,体积为ycm3

  【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动]

  1、各小组合作回顾函数图象的画法,画出下列函数的图象

  (1)y=2x(2)y=—2x

  【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:引导学生正确画图、积极探索、总结规律、准确表述。学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112

  问:①观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行:

  (1)自变量

  (2)函数值

  (3)升降性

  (4)特殊点

  (5)过了那几个象限

  (6)图象的形状

  ②总结正比例函数图象的性质

  3、两个图象的共同点:都是经过原点的直线。不同点:函数y=2x的图象从左向右呈状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈状态,即随x增大y反而减小

  三、巩固练习:

  1、判断下列函数哪些是正比例函数

  (1)y=2x

  (2)y=kx(k≠0)

  (3)y=—1/3x(4)y=1/2x+2

  (5)y=3x2

  (6)y=—3x2

  2、教材练习题

  比较两个函数图象可以看出:两个图象都是经过原点的直线。函数的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  四、总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的'图象是一条经过原点的直线,我们可称它为直线y=kx。当k>0时,直线y=kx经过一、三象限,从左向右上升,即y随x的增大而增大;当k二、四象限,从左向右下降,即y随x的增大而减小。

  五、巩固深化

  1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  2、活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象。画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x

  六、总结归纳,布置作业

  1、在本节课中,我们经历了怎样的过程,有怎样的收获?

  2、你还有什么困惑?

  作业:P98习题19.2─1、2题。

  教学设计说明:

  本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。

正比例教学设计3

  1.联系生活,从生活中引入,激发了学生学习兴趣。

  数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。

  2.有效地处理教材,让学生亲身经历数学模型的形成过程。

  《比例的'意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的国旗的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。

  3、服务于生活,回到生活中去,解决生活中的实际问题。

  在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。

正比例教学设计4

  教学内容:正比例

  教材分析:

  正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。

  学情分析:

  学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。

  教学目标:

  1.结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。

  2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学重点:

  1、结合丰富的事例,认识正比例,理解正比例的意义。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学用具:

  课件

  教学过程:

  一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (二)情境二:

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  (三)情境三:

  1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?

  说说从数据中发现了什么?

  3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的'周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  (四)归纳正比例的意义

  1. 时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  2. 购买苹果应付的钱数与质量有什么关系?

  3. 正方形的周长与边长有什么关系?

  4. 观察思考成正比例的量有什么特征?

  一个量变化,另一个量也随着变化,并且这两个量的比值相同。

  5. 小结

  两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。

  二、巩固练习

  1. 想一想:

  正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化情况如下:

  小明的年龄/岁

  6

  7

  8

  9

  10

  11

  爸爸的年龄/岁

  32

  33





  (1) 把表填写完整。

  (2) 父子的年龄成正比例吗?为什么?

  (3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再集体汇报

  三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?

  板书设计:

  正比例

  路程÷时间=速度(一定)

  总价÷数量=单价(一定)

  正方形的周长÷边长=4(一定)

  两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。

正比例教学设计5

  教学目标:

  通过具体问题认识成正比例、反比例的量。

  能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。

  能找出生活中成比例和成反比例量的实例,并进行交流。

  教学重点和难点:

  理解两个变量之间的函数关系

  教学准备

  小黑板投影片

  教学过程:

  本节课主要是对回顾与交流部分知识进行复习。

  一、生活中有哪些成正比例的量?有哪些成反比例的量?小组同学互相举例说一说。

  ①可以让学生课前进行复习,并收集相关信息,课上展示。

  ②以小组形式展开交流、反思,然后组织汇报。

  ③展示部分学生的优秀作品。

  二、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的'情况,并用多种方式表示这两个量之间的关系。

  (1)可以列表。

  (2)可以画图。

  (3)可以用式子表示。

  教材创设了路程和时间之间的关系,并运用表格、图、关系式、自然语言等方式来描述这一关系,使学生体会刻画数量之间的关系的多种形式,并促使学生在几种方式之间进行转化。教学时,教师可以再举出一些实际问题或鼓励学生提供出实际问题,让学生再次经历多种方式表示的过程;教师应通过语言、板书等形式将几种方式进行对应。

  三、举出生活中数学中一量虽另一量变化的例子。将学生的视野由正比例、反比例拓展到两个量之间的关系,这也体现了教材的特点,学生只要举出例子就行了,教师可以让学生说清楚谁随谁变化,对于感兴趣的学生,教师可以鼓励学生通过表格、兔等大致的刻画变量之间的关系。

正比例教学设计6

  老师执教的《正比例的意义》这课,对我感受很深。

  一.结合生活实际

  周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。

  二.突出学生的主体地位

  周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的.路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。

  三.练习设计具有阶梯性

  周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。

  建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。

正比例教学设计7

  教学目的:

  1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。

  2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。

  教具、学具准备:

  教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。

  教学过程:

  一、复习准备

  1、什么是比例?

  2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。

  时间(时)27

  路程(千米)180630

  二、导入新课

  教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。

  三、进行新课

  用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。

  时间(时)

  路程(千米)

  教师:先独立思考后再讨论、交流、回答以下问题

  (1)表中有哪两种量?

  (2)这两种量是怎样变化的?

  (3)还能够从表中发现哪些规律?

  教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。

  板书:相关联。

  教师:你们还发现哪些规律呢?

  引导学生归纳出:

  (1)时间和路程是相关联的两种量,路程随着时间的变化而变化;

  (2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;

  (3)路程和时间的比值都是90;时间和路程的比值都是1/90。

  路程和时间的比值是什么?(速度)

  在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)

  数量(米)1234567…

  总价(元)8.216.424.632.841.049.257.4…

  先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。

  学生分析后引导学生归纳:

  (1)表中买布的数量和买布的总价是相关联的`两种量,总价随着数量的变化而变化;

  (2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;

  (3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。

  教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。

  教师:请同学们相互说一说生活中还有哪些是成正比例的量?

  指导学生完成第56页“做一做”。

  四、巩固练习

  指导学生完成练习十六第1~3题。

  五、课堂小结

  教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

  学生小结后教师对全课所学的知识进行归纳。

  创意作业

  小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。

正比例教学设计8

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的`时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

正比例教学设计9

  教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。

  教学目标:

  1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

  教学重点:

  结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

  教学难点:

  能跟据正比例的意义判断两种相关联的量是否成正比例的量。

  教学准备:

  教学过程:

  一、导入

  谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

  学生讨论,反馈。

  [设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

  二、教学例1

  1、出示例1的表格。

  提问:表中列出了哪两种量?(板书:时间和路程)

  观察表中的数据,哪一种量的变化引起了另一种量的变化?

  指名回答。

  谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

  为什么说路程和时间是两种相关联的量?

  学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

  2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

  学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

  提问:你能用一个式子来表示上面的规律吗?

  根据学生回答,板书:=速度(一定)

  3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

  [设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

  三、教学“试一试”

  1、出示“试一试”,学生自由读题。

  2、让学生根据已知条件把表格填写完整。

  3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

  4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

  [设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

  四、归纳字母公式

  1、比较例题和“试一试”的相同点。

  提问:观察上面的两个例子,它们有什么相同的地方呢?

  (1)都有两种相关联的`量;

  (2)两种相关联的量相对应的两个数的比值总是一定的;

  (3)两种量都成正比例。

  2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

  根据学生的回答,板书:=(一定)

  交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

  [设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

  五、巩固练习

  1、完成第63页“练一练”。

  学生独立思考并作出判断,要用完整的语言说出判断的理由。

  2、完成练习十三第1题。

  (1)让学生按题目要求先各自算一算、想一想。

  (2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

  3、完成练习十三第2题。

  (1)让学生独立判断,并指名说说判断的理由。

  (2)注意引导学生有条理地说明判断的思考过程。

  4、完成练习十三第3题。

  (1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

  (2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

  (3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  [设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

  六、全课总结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

  [设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

  七、作业

  完成《练习与测试》相关作业。

  板书设计

  正比例的意义

  时间和路程路程和时间是两种相关联的量。

  =80=80=80……

  =速度(一定)

  =(一定)

正比例教学设计10

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

  教学目标:

  ⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的'知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:进一步理解比和比例的一些知识。

  教学难点:感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、自主学习,完成练习。

  ⑴揭示课题。

  教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

  ⑵自主练习。

  教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

  学生自主练习,教师巡视。

  二、交流讨论,梳理知识。

  ⑴整理比的知识。

  交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

  ⑵感受生活中的比例。

  交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

  ⑶整理比例的知识。

  交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

  ⑷整理解比例的知识。

  交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

  ⑸解决实际问题。

  交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

  ⑹谈谈本节课的收获。

正比例教学设计11

  教学目标:

  1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

  教学重点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  预习指导:

  一、自学教材。

  阅读教材第62~63页。

  二、检查学习。

  1.怎样两个量成正比例?

  2.完成"试一试"。

  教学准备:

  课件和口算题。

  教学过程:

  一、导入

  谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1 1.课件出示例1的表

  ⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

  ⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

  2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

  3.我们可以写出这么几组路程和对应时间的比。

  ⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

  ⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

  ⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  课件出示:路程和时间成正比例。

  ⑷现在你能完整地说一说表中路程和时间成什么关系吗?

  4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。

  ⑴课件出示"试一试"

  ⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

  课件出示表中的数据。

  ⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

  集体交流:

  ⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

  ⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

  小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

  ⑹你能完整地这样说给你的同桌听一听吗?

  ⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的.关系可以用怎样的式子表示?

  课件出示课题。

  ⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

  指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

  5.完成"练一练"

  ⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

  ⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

  小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

  三、练习

  1.完成练习十三第1题。

  请大家继续看课本66页第1题

  2.完成练习十三第2题

  ⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

  ⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

  3.完成练习十三第3题(课件出示题目)

  ⑴课件出示放大后的三个正方形、

  ⑵大家看一看,你是这样画的吗?

  ⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

  校对学生做的情况。

  ⑷请大家根据表中的数据讨论下面两个问题。

  ①正方形的周长与边长成正比例吗?为什么?

  ②正方形的面积与边长成正比例吗?为什么?

  四、总结。

  通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

  板书设计:

  正比例的意义

  路程和时间是两种相关联的量,

  时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

  我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

正比例教学设计12

  教学目标

  (一)教学知识点

  1、认识正比例函数的意义。

  2、掌握正比例函数解析式特点。

  3、理解正比例函数图象性质及特点。

  4、能利用所学知识解决相关实际问题。

  教学重点

  1、理解正比例函数意义及解析式特点。

  2、掌握正比例函数图象的性质特点。

  3、能根据要求完成转化,解决问题。

  教学难点

  正比例函数图象性质特点的掌握。

  教学过程

  Ⅰ、提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥?鸟)套上标志环。4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

  1、这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2、这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3、这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

  类似于y=200x这种形式的函数在现实世界中还有很多。它们都具备什么样的特征呢?我们这节课就来学习。

  Ⅱ、导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1、圆的周长L随半径r的大小变化而变化。

  2、铁的密度为7.8g/cm3。铁块的质量m(g)随它的体积V(cm3)的大小变化而变化。

  3、每个练习本的厚度为0.5cm。一些练习本摞在一些的总厚度h(cm)随这些练习本的.本数n的变化而变化。

  4、冷冻一个0℃的物体,使它每分钟下降2℃。物体的温度T(℃)随冷冻时间t(分)的变化而变化。

  解:

  1、根据圆的周长公式可得:L=2r。

  2、依据密度公式p=可得:m=7.8V。

  3、据题意可知:h=0.5n。

  4、据题意可知:T=—2t。

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律。

  1、y=2x2、y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述。

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。

  活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1)。

  2、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2)。

  3、两个图象的共同点:都是经过原点的直线。

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限。

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较。

  1、y=x2、y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线。函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线。当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx。

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理。

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象。

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  Ⅲ。随堂练习

  用你认为最简单的方法画出下列函数图象:

  1、y=x2、y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1、y= x(2,3)

  2、y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础。

  课后作业

  习题11.2─1、2题。

正比例教学设计13

  教材分析:

  正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。

  学情分析:

  学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。

  教学目标:

  1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。

  2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学重点:

  1、结合丰富的事例,认识正比例,理解正比例的好处。

  2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学用具:

  课件

  教学过程:

  一、在情境中感受两种相关联的量之间的变化规律。

  (一)情境一

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (二)情境二

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  (三)情境三

  1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:这两个表格中的变化状况与上两题的.变化规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  (四)归纳正比例的好处

  1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  2、购买苹果应付的钱数与质量有什么关系?

  3、正方形的周长与边长有什么关系?

  4、观察思考成正比例的量有什么特征?

  一个量变化,另一个量也随着变化,并且这两个量的比值相同。

  5、小结

  两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。

  二、巩固练习

  1、想一想

  正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化状况如下

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再群众汇报

  三、全课总结:

  说说你在这节课中学到了什么知识?有什么不明白的地方?

  板书设计:

  正比例

  路程÷时间=速度(必须)

  总价÷数量=单价(必须)

  正方形的周长÷边长=4(必须)

  两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。

正比例教学设计14

  教学目标:

  1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

  2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3.结合丰富的事例,认识正比例。

  教学重点:

  1、结合丰富的事例,认识正比例。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。教学课时:两课时

  第一课时

  教学过程:

  一、课前预习

  1、填好书中所有的表格

  2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

  3、把不理解的内容用笔作重点记号,待课上质疑解答

  二、展示与交流

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  说说你发现的规律。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  5、正比例关系:

  (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  (2)购买苹果应付的钱数与质量有什么关系?

  6、观察思考成正比例的量有什么特征?

  一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

  (四)想一想:

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化情况如下:

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再集体汇报

  在老师的小结中感受并总结正比例关系的特征

  一、反馈与检测

  1、在一间布店的柜台上,有一张写着某种花布的米数和总价如下表:

  数量(米) 7

  总价(元)

  9.519

  28.5

  47.5

  66.5

  1.表中有()和()两种量。

  2.任意写出三个相对应的总价和数量的比,并算出它们的比值。 3、在这道题里,花布的()一定,()和()成正比例。 自己读题,并试着填一填.指名汇报.二、回答问题

  1、根据下表中平行四连形的面积与高相对应的数据,判断当底是6厘米时,它们是不是成正比例,并说说理由。

  平行四边形的面积

  218 430

  平行四边形的高

  默读题目,有答案的举手.2、把表填完整,从中你发现了什么?应付的钱数与所买的邮票的枚数成正比例吗?买面值8角的邮票。打开书21页,在书上完成.3、判断下面各题中的两个量是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长

  (4)火车行驶的时间和路程。

  (5)火车的速度一定,行驶的时间和路程。

  4、能力培养

  把一定数量的钱放到银行存活期,存款的年限和所得的利息是不是成正比例?

  5、找一找生活成正比例的

  板书设计: 正比例 X=ky(k一定)

  2.正比例和反比例

  第二课时

  教学目标:

  使学生理解正比例的意义,会正确判断成正比例的量。教学重点难点:

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。教学过程:

  一、复习导入 1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率? 板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  二、新课讲授

  1.教学例1

  教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。

  (1)铅笔的总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的',即单价一定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)

  小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  三、归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4.用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:

  (一定)5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  四、课堂小结:

  通过这节课的学习,你有什么收获?

  五、课后作业

  完成练习册中本课时的练习。完成教材第46页的“做一做”(1)~(3)。

  六、板书设计

  第1课时

  正比例 =速度(一定)=单价(一定)=工作效率(一定)

  (一定)

  成正比例的量的三要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。

正比例教学设计15

  教学内容:

  本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

  教材分析:

  本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

  教学目标:

  1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

  2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

  4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

  教学重点:

  认识正、反比例的意义

  教学难点:

  根据正、反比例的意义正确判断两种相关联的'量是否成正比例或反比例。

  课时安排:

  正比例和反比例(4课时)

  第1课时

  教学内容

  成正比例的量

  教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

  课型

  新授

  本单元教时数:4本教时为第1教时备课日期月日

  教学目标

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

  3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

  教学重点

  使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点

  根据正比例的意义正确判断两种相关联的量是不是成正比例。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例1

  1、谈话引出例1的表格

  2、这两种量的数据是怎样变化的?

  时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

  小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

  3、但是,你能发现什么呢?

  如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

  这个比值是什么呢?

  谁能用一句话来概括例1中的变化与不变

  4、介绍成正比例的量

  指名说说,表中有哪两种量

  引导学生观察,

  指名说一说。

  启发学生从“变化”中寻找“不变”。

  学生试着回答,教师帮助完成。

  学生完整的说说路程和时间成正比例的量

  二、教学试一试

  1、出示教材试一试

  教师指导学生完成

  学试着完成,并交流回答四个问题。

  三、概括意义

  1、引导学生观察例1和试一试,它们有什么共同点。

  2、概括正比例的意义,揭示课题(板书)

  3、用字母怎样表示成正比例关系的两种量呢?

  y:x=k(一定)

  观察,说说自己的发现。

  学生完整的说一说例1和试一试成正比例关系。

  四、巩固练习

  1、完成练一练

  2、练习十三第1题

  重点让学生说出判断的理由

  3、做练习十三第2题

  4、做练习十三第3题

  引导学生根据计算的结果来判断。完成书上的问题

  重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

  独立判断,交流时说出判断的理由。

  学生先各自算一算,交流,说出思考过程。

  指名判断,交流时说出思考过程,其它同学进行补充或纠正。

  学生理解题意,然后在书上画一画,算一算,填在书上。

  五、全课总结

  学习了什么?你有什么收获?

  说一说

  板书

  正比例的意义

  两种相关联的量=k(一定)y和x就成正比例的量

  课后感受

  第2课时

  教学内容

  正比例的意义及其图像

  教材第63页例2,随后的练一练和练习十三的第4、5题

  课型

  新授

  本单元教时数:4本教时为第2教时备课日期月日

  教学目标

  1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学重点

  使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  教学难点

  使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例2

  1、先出示例1的表格

  谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

  出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

  引导学生观察这些点的排布规律,并用直线连起来。

  提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

  (2)图中所描的点在一条直线上吗?

  (3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

  学生描点。

  学生按要求操作完成。

  指名回答

  如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

  二、巩固练习

  1、练一练

  学生做好后展示学生画的图象,共同评议

  问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

  指名回答第(3)个问题

  追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

  2、练习十三第4题

  既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

  第二题要求估计,答案出入是允许的

  3、第5题

  先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

  学生独立完成

  指名回答第(2)个问题

  学生相互间说一说

  学生回答,要说明理由

  讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

  三、全课总结

  今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

  说说,议论议论。

  板书

  正比例的意义及其图像

  例2(图像)

  课后感受

【正比例教学设计】相关文章:

正比例教学设计10-27

正比例教学设计15篇05-11

礁盘教学设计|礁盘教学设计资料|03-25

化学教学教学设计02-10

《aoe》教学设计08-19

《掌声》教学设计08-11

《猫》教学设计08-11

劝学教学设计08-11

《观潮》教学设计08-11