简易方程教学设计优秀

时间:2024-04-13 10:01:51 教学设计 我要投稿
  • 相关推荐

简易方程教学设计优秀

  在教学工作者开展教学活动前,时常需要用到教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?以下是小编收集整理的简易方程教学设计优秀,欢迎阅读,希望大家能够喜欢。

简易方程教学设计优秀

简易方程教学设计优秀1

  数学书p58—p59及“做一做”,练习十一第5—7题。

  1、结合具体图例,根据等式不变的规律会解方程。

  2、掌握解方程的格式和写法。

  3、进一步提高学生分析、迁移的能力。

  掌握解方程的方法。

  一、导入新课

  二、新知学习

  (一)教学例1

  出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

  要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式

  方程两边同时减去一个3,左右两边仍然相等。板书:x+3—3=9—3

  化简,即得:x=6

  这就是方程的解,谁再来回顾一下我们是怎样解方程的?

  左右两边同时减去的为什么是3,而不是其它数呢?

  追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

  板书:方程左边=x+3=6+3=9=方程右边

  所以,x=6是方程的解。

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的`过程中写的都是等式,而不是递等式。

  (二)教学例2

  利用等式不变的规律,我们再来解一个方程。

  出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

  抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

  展示、订正。

  通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  (三)反馈练习

  1、完成“做一做”的第1题。

  2、试着解方程:x—2。4=6 x÷9=0。7(强调验算)

  三、课堂小结。

  这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  四、作业:

  练习十一5—7题。

  解方程教学反思

  在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

  1、在具体情境中理解算理,经历代数的过程。

  本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。

  2、在直观操作中掌握方法,发展数学素养。

  在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。

  3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

简易方程教学设计优秀2

  1、经历从生活情境到方程模型的建构过程。

  2、理解方程概念,感受方程思想。

  3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

  一、情境创设,初建相等关系模型。

  1、师出示天平图,认识吗?

  师:天平可以称出物体的质量是多少。

  2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

  (左右倾斜各一幅,平衡的一幅。图略)

  学生会选择图3,老师顺着学生的思路出示图3天平平衡图

  图3为什么能称出两只苹果的质量?

  你能用一个式子表示出天平两边物体的质量关系么?

  100+100=200

  图1和图2为什么不能称出两只苹果的质量呢?

  你也能用一个式子表示出天平两边物体的质量关系吗?

  100+100>100、100+100<500

  3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

  你的小脑袋里有等式吗?说一个试试。

  除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

  师:没想到,同学们对等式是这么的熟悉。

  二、借助基础,拓展等式外延。

  1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

  (书上四幅图略)

  选一个等式说一说它表示什么意思?

  天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

  2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

  3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

  突出含有未知数的等式

  这些含有未知数的等式你见过吗?

  生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

  三、进一步拓宽对等式的理解。

  1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的`一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

  (师出示四幅生活情境图)

  (1)铅笔盒与笔记本共20元。

  (2)借出的书与剩下的书共150本。

  (3)3瓶相同的色拉油,每瓶x元,共8元。

  三、明确特征,归纳概念。

  其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

  揭示数学上我们把含有未知数的等式叫做方程。

  四、深刻领悟,挖掘内涵。

  1、黑板上的其它式子为什么不是方程?

  2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

  36-7=29、60+x>70、8+x

  6+x=14、7+15=22、5y=40

  活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

  (在活动中理解等式与方程的关系)

  五、实践应用,拓展外延。

  1、你能看图列出方程吗?

  图1:天平(2x=500)

  图2:四个物体16。8元

  图3:两杯水共有450毫升

  2、从文字表述中找出方程

  (1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

  (2)张师傅每天做x个零件,用了6天做了780个零件。

  (3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

  3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

  出示:5x=200(可提示:如天平图等)

  个别交流的基础上同桌互说。

  六、全课总结:学习到现在你有哪些收获?

  从不能用方程表示到能用方程表示图中的数量关系的一种演变。

  图1:买4个小熊猫玩具,每个x元,120元不够

  图2:买3个,每个x元,120元还不够

  图3:买2个,每个x元,120元正好

  延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

简易方程教学设计优秀3

  (1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

  (2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

  (3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

  教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。

  教具准备:天平一只,算式卡片若干张,茶叶筒一只。

  一、游戏导入,揭示课题

  1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。

  说说生活中,你还见过哪些平衡现象?

  2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平来学习新的知识《解简易方程》。(板书课题)看了课题,同学们想知道些什么?

  二、教学新课

  1、方程的意义

  (1)认识天平:简单介绍天平的结构和使用方法。

  (2)操作天平:

  a、一边放两个50克的砝码,另一边放100克的.砝码,天平平衡。请学生用一个式子来表示这种关系。(板书:50+50=10050×2=100)

  b、一边放一个20克的砝码和一个茶叶筒,另一边放100克砝码,天平平衡。茶叶筒的重量不知道,可以怎么表示?你也能用一个式子来表示这种关系吗?

  (板书:x+20=100)

  c、让学生操作天平,出现不平衡现象,也用式子表示。

  (3)出示天平称东西的示意图,让学生用式子表示。(出示卡片)

  30+20=502x+50>10080<2x

  3x=180100+20<100+50100+2x=50×3

  x—18=2460÷20=3x÷11=5

  (4)组织学生观察以上式子。

  请同学们观察以上式子,想想能不能将这些式子分分类,并说出你分类的标准。(小组讨论,写下来)

  按符号的不同分成两大类(出示实投):

  80<2x2x+50>100100+20<100+50

  指出:这些用大于、小于号连成的式子左右两边不相等,就叫做不等式。

  谁再来说几个等式?同桌互相说几个等式。

  30+20=503x=180100+2x=50×3

  x—18=2460÷20=3

  指出:这些用等号连接成的表示两边相等的式子都叫等式。(板书:等式)

  (5)观察以上等式,你能不能再分分类,也说一说你分类的标准?(同桌讨论)

简易方程教学设计优秀4

  教学内容:p64—65的练习十二第4—8题。

  教学目的:

  1、使学生进一步掌握列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。

  2、使学生在解决问题方法的的过程中,进一步培养学生的数学思维能力。

  教学重点:能正确地列方程解答简单的实际问题。

  教学难点:能正确找出等量关系。

  教学准备:教学光盘

  课前研究:复习“列方程解答简单的实际问题”,注意在解分数方程题过程中应该注意些什么?

  教学过程:

  1、交流课前研究

  2、补充:

  分析数量关系:

  (1)一桶油,用去了。

  (2)十月份比九月份节约用水。

  (3)男生人数的正好是女生的人数。

  学生在小组里说说数量之间的关系。

  集体交流,教师板书数量关系式。

  看着第(3)个数量关系式讨论:如果知道男生的人数,怎么求女生的人数?如果知道女生的人数,怎么求男生的人数?

  1、练习十二第4题

  学生独立完成后集体订正,订正时重点交流错例的原因。

  2、练习十二第5题

  读题后理解题意,并找出等量关系:原来水稻每公顷产量×=新杂交水稻每公顷产量

  学生独立列式计算后再集体订正。

  3、练习十二第6题

  理解“10小时行了全程的”是指10小时行驶的路程相当于全程的。也可以理解为已经行驶的时间相当于行驶全程所需时间的。

  学生独立完成后全班交流。

  4、练习十二第7题

  弄清“”是把这袋面粉重25千克看作单位“1”的。

  第(1)题要求“吃了多少千克”,就是求25千克的是多少;

  第(2)题中的数量关系是“这袋面粉的千克数×=15”

  比较上下两题有什么区别?

  5、练习十二第8题

  学生独立完成后集体交流。

  比较两个问题的联系和区别。

  明确:第1小题是求“一个数的`几分之几是多少”,可以用乘法计算;第2小题是“已知一个数的几分之几是多少求这个数”可以列方程解答。

  通过今天的练习,你还有哪些地方掌握的不够的吗?有什么经验要向大家介绍吗?

  课内:补充习题p46第3题;p47第3、4题。

  课外:天天练p40

  弹性作业:

  1、直接写出得数。

  2÷ = 3 3 × = ÷ = 3 ÷ =

  2、解方程。

  ⅹ = 18 ⅹ= ⅹ = ⅹ= ⅹ÷ = ⅹ=

  3、(1)一只书包65元,一枝钢笔的价钱是书包的。一枝钢笔多少元钱?

  65× =26(元)答:一枝钢笔26元钱。

  (2)一枝钢笔26元,是一只书包价钱的。一只书包多少元钱?

  ⅹ=26 ⅹ=65答:一只书包65元钱。

简易方程教学设计优秀5

  教学内容:

  数学书P59及“做一做”,练习十一第5-7题。

  教学目标:

  1、结合具体图例,根据等式不变的规律会解方程。

  2、掌握解方程的格式和写法。

  3、进一步提高学生分析、迁移的能力。

  教学重难点:

  掌握解方程的方法。

  教学过程:

  一、导入新课

  前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

  二、新知学习

  (一)教学例1

  出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

  要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

  抽答。

  方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

  化简,即得: x=6

  这就是方程的解,谁再来回顾一下我们是怎样解方程的?

  左右两边同时减去的.为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

  追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

  板书:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以, x=6是方程的解。

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

  (二)教学例2

  利用等式不变的规律,我们再来解一个方程。

  出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

  抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

  展示、订正。

  通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  (三)反馈练习

  1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

  2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

  试着解方程:x-2.4=6 x÷9=0.7(强调验算)

  (四)课堂作业:“做一做”第2题。

  三、课堂小结。

  这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  四、作业:练习十一5—7题。

简易方程教学设计优秀6

  教学目标

  1、知识目标:在自主探究的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系。

  2、能力目标:培养学生认真观察、思考分析问题的能力。渗透数学来源于实际生活的辩证唯物主义思想。

  3、情感目标:通过自主探究,合作交流等教学活动,激发学生兴趣,培养合作意识。

  教学重点

  理解和掌握方程的意义。

  教学难点

  弄清方程和等式的异同

  教具准备

  多媒体课件、作业纸

  教学设计

  师生谈话:同学们,你们玩过跷跷板吗?

  (课件出示:在美丽的大森林中,山羊、小猴、小狗、小兔在做游戏)

  让学生猜测如果让山羊和小猴玩跷跷板,会出现什么结果。

  (课件演示验证学生的回答,出现跷跷板不平衡的画面)

  提问:怎样才能让小动物开心地玩起来呢?

  学生:让小狗、小兔加入到小猴那边。

  (课件演示:跷跷板逐渐平衡。并能一上一下动起来。)

  教师小结:当两边重量差不多时,跷跷板基本保持平衡,就能很好地玩游戏了。

  [评析]:动物是学生们喜欢的形象,以故事情境导入,创设生动有趣的情景,借助多媒体课件演示的优势,使学生初步感受平衡与不平衡的现象。从而紧紧抓住学生的“心”。

  师:在我们的数学学习中,还有一种更为科学的平衡工具,猜猜是什么?

  1、直观演示,激发兴趣

  课件出示一架天平,教师向学生介绍它的工作原理。

  让学生仔细观察,现在天平处于什么状态。

  提问:能用一个式子表示这种平衡状态吗?

  根据学生的回答,教师板书:50+50=100

  2、继续实验,自主发现

  1)分小组实验,让学生自己动手做一做(每个小组发一些有重量的砝码和学生自己手中的书本等)

  要求:三组设计平衡状态,三组设计不平衡状态。并据此列式。

  2)学生实验,教师巡回作指导。

  3)学生交流汇报,教师板书:

  平衡状态的:

  50+10=60

  50=20+书……

  不平衡状态的:

  50+30>两本书

  50<三本书……

  4)学生动手把不平衡状态的天平调平衡并列式

  50+30=四本书

  50+10=三本书

  5)师生一起把书用字母代替:

  50+10=60,50=20+x,50+30>2x,50<3x

  50+30=4x

  50+10=3x

  3、整理分类,认识方程。

  1)学生把上没面的式子进行分类

  2)让学生明确:像这些含有等号的式子都是等式。(板书:等式,标出大集合圈)

  观察右边三个等式与左边一个等式有什么区别?

  学生很快明确:右边的等式里都含有未知数。(在等式前面板书:含有未知数)

  教师总结:我们把右边这三个含有未知数的等式称为方程。

  3)学生齐读方程的意义,同桌互相说出一个方程。

  [评析]:这部分教学设计为学生提供了充分的从事数学活动的机会,让学生动手去操作,去合作。让学生通过观察、思考、尝试分类、交流,积极主动的参与到数学活动中来,并初步渗透了数学中的集合思想。

  课件出示两个小动物争吵的画面

  小狗:我知道了,所有的方程一定是等式。

  小兔:不对不对,应该说所有的等式一定都是方程。

  判断谁说的对,并叙述理由。

  学生阅读数学小知识“你知道吗?”

  练习十一的1题

  教学反思

  1、利用兴趣调动学生的积极性,让学生主动参与。

  生活是兴趣的源泉,体验是主动参与的动力。通过直观演示、学生实验,调动了学生的积极性和参与的热情,每一个学生都积极的加入了学习的.热流中来。教学当中始终注意激发学生的学习兴趣,增强学生学习的信心。给学生提供了充分的归纳、类比、猜测、交流、反思的时间和空间,使学生的思维能力得到了进一步的提高。

  2、关注情景教学

  在本节课中,将枯燥的方程概念融于浅显生动的情景中。导入利用小动物创设了生动有趣的教学背景,整个教学过程中,学生始终对天平的所有情景保持着浓厚的兴趣。通过天平称重的实验,让学生尝试用数学知识来描述实验现象,使学生获得了等式和不等式的知识。

【简易方程教学设计优秀】相关文章:

简易方程教学反思04-14

《简易方程》教学反思03-11

《解简易方程》教学反思10-07

简易方程教学反思范文10-27

方程教学设计01-02

方程教学反思04-11

《等式与方程》教学反思10-14

方程的意义教学反思04-10

《解方程》教学反思04-09