八年级《一次函数》教学设计

时间:2024-01-29 16:41:15 教学设计 我要投稿
  • 相关推荐

八年级《一次函数》教学设计

  作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。教学设计应该怎么写才好呢?以下是小编帮大家整理的八年级《一次函数》教学设计,希望能够帮助到大家。

八年级《一次函数》教学设计

八年级《一次函数》教学设计1

  一、一次函数

  1、问题导入:

  问题1:小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.己知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

  问题2:小张准备将平时的零用钱节约一些储存起来.他己存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份数之间的函数关系式.

  请同学们思考后回答:

  (1)找出问题中的变量并用字母表示,列出函数关系式.

  (2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?

  以上这些问题,请各小组讨论一下,派代表回答.引出课题(板书课题)教师最后总结一次函数的概念.(板书)

  2、引导学生观察这两个函数关系式的结构特征,引出一次函数的一般形式(学生回答,且互相补充)老师最后归纳:一次函数通常可以表示为 的形式,其中 为常数,

  .特别地,当 时,一次函数 (常数 )也叫做正比例函数.

  二、一次函数的图象是什么形状呢?

  1、做一做:

  我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目).根据学生的动手实践、观察与讨论,得出结论:一次函数的图象是一条直线.特别地,正比例函数的图象是经过原点的一条直线.

  2、接下来教师提问:

  (1)观察所画出的`四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点.

  (2)能否从中了现一些规律?对于直线 ( 是常数, ),常数 的取值对于直线的位置各有什么影响?

  3、组织学生分小组讨论,相互交流、相互补充,最后总结出规律:当 一样, 不一样时,直线方向相同(平行),但没有相同点;当 不一样, 一样时,都经过(0,

  )点(相交),但直线方向不同.

  4、巩固训练:

  (1)在同一平面直角坐标系中画出下列函数的图象

  教师提出问题:①画出图象,看看是否与上面的讨论结果一样;②你取的是哪几个点?和同学比较一下,怎样取比较简便?

  (2)将直线 向下平移2个单位,得到直线_______________________.

  将直线 向上平移5个单位,得到直线_______________________.

  (由学生到前板演).

  5、对于教材中第42页例2处理,教师先用多媒体打出,并提出问题:平面直角坐标系中坐标轴上点的坐标有什么特征?在坐标轴上取点有什么好处?组织学生结合问题去分析,动手尝试,小组讨论交流,最后达成共识.对于教材第43页例3处理,教师可以提出以下几个问题讨论同学们讨论:①这里

  取的数悬殊较大怎么办?②这个函数是不是一次函数?③这个函数中自变量

  的取值范围是什么?函数的图象是什么?④在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他情形?你能不能找出几个例子加以说明?

  三、一次函数的性质

  函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?

  1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数

  的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师运用现代化的教学手段来演示点的移动情况,进一步促进了学生对一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值

  随自变量 的增大而增大.(教师板书)

  2、请同学们画出函数的图象,然后教师可以提出问题:观察它们是否也有相应的性质,有什么不同你能否发现什么规律?让学生带着老师提出的问题进行分组讨论,相互交流,最后归纳出一次函数如下性质:(1)当时, 随 的增大而增大,这时函数的图象从左到右上升;(2)当 时, 随 的增大而减小,这时函数的图象从左到右下降;

  3、补充性质:(3) 时,一次函数的图象经过一、二、三象限;(4) 时,一次函数的图象经过一、三、四象限;(5)时,一次函数的图象经过一、二、四象限;(6) 时,一次函数的图象经过二、三、四象限.

  4、对于教材中第45页做一做处理,可以作为例题,引导学生动手操作,分组讨论,由学生自己得出结论,教师起着指导作用;对于教材中第45页例4的处理,教师可以先组织学生审题分析找出题中的己知量,并提示学生:要想求一次函数的关系式,关键是要确定和 的值,那么,结合题中所给的己知条件,又怎样来确定和的值呢?组织学生讨论,结合学生得出的结论,教师再给出待定系数法的概念,这样学生马上就会理解,从而难点得以突破.在这里教师要提醒学生,注意实际问题有关函数的自变量的范围限制.

八年级《一次函数》教学设计2

  教材分析

  1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

  2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

  学情分析

  1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

  2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的'常见数学模型之一,也是学生今后进一步学习其它函数的基础。

  3、学生认知障碍点:根据问题信息写出一次函数的表达式。

  教学目标

  1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

  2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

  3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

  教学重点和难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

  教学过程

八年级《一次函数》教学设计3

  一、常量、变量:

  在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;

  二、函数的概念:

  函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

  三、函数中自变量取值范围的求法:

  (1).用整式表示的函数,自变量的取值范围是全体实数。

  (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

  (3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

  (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

  (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

  四、 函数图象的定义:

  一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

  五、函数值:

  函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值

  例如:在正方形的面积公式S=a2中,若a=2;则S=4;若a=3,则S=9,这说明4是当a=2时的函数值,9是当a=3时的函数值

  六、函数有三种表示形式:

  (1)列表法 (2)图像法 (3)解析式法

  七、正比例函数与一次函数的概念:

  一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

  一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.

  当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.

  八、正比例函数的.图象与性质:

  (1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

  (2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。

  九、一次函数与正比例函数的图象与性质

  一次函数概念

  如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.

  图 像

  一条直线

  性 质

  k>0时,y随x的增大(或减小)而增大(或减小);

  k<0时,y随x的增大(或减小)而减小(或增大).

  直线y=kx+b(k≠0)的位置与k、b符号之间的关系.

  (1)k>0,b>0; (2)k>0,b<0;

  (3)k>0,b=0 (4)k<0,b>0;

  (5)k<0,b<0 (6)k<0,b=0

  一次函数表达式的确定

  求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.

  5.一次函数与二元一次方程组:

  解方程组

  从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值,一次函数知识要点

  解方程组

  从“形”的角度看,确定两直线交点的坐标.

  十、求函数解析式的方法:

  待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

  1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.

  2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标

  3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.

  4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围

八年级《一次函数》教学设计4

  教学目标

  1、了解正比例函数y=kx的图象的特点。

  2、会作正比例函数的图象。

  3、理解一次函数及其图象的有关性质。

  4、能熟练地作出一次函数的图象

  教学重点

  正比例函数的图象的特点。

  教学难点

  一次函数的图象的性质。

  教学过程:

  1、新课导入

  上节课我们学习了如何画一次函数的图象,步骤为

  ①列表;

  ②描点;

  ③连线。

  经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

  本节课我们进一步来研究一次函数的图象的其他性质。

  2、讲授新课

  (1)首先我们来研究一次函数的特例——正比例函数有关性质。

  请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象。

  如图:

  3、议一议

  (1)正比例函数y=kx的图象有什么特点?(都经过原点)

  (2)你作正比例函数y=kx的图象时描了几个点?(至少两点)

  (3)直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?

  4、小结:正比例函数的图象有以下特点:

  (1)正比例函数的图象都经过坐标原点。

  (2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。

  (3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。

  (4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小。

  5、做一做

  在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的'图象。

  一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k>0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。

  由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两

  个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。

  6、想一想

  (1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?(y=5x的函数值先达到20,这说明随着x的增加,y=5x的函数值比y=2x+6的函数值增加得快)

  (2)直线y=-x与y=-x+6的位置关系如何?(平行,一次函数k相同就平行)

  (3)直线y=2x+6与y=-x+6的位置关系如何?(相交)

  教法、学法:

  知识扩充

  7、课堂练习

  1、下列一次函数中,y的值随x值的增大而增大的是()

  A、y=-5x+3B、y=-x-7C、y=-D、y=-+4

  2、下列一次函数中,y的值随x值的增大而减小的是()

  A、y=x-8B、y=-x+3C、y=2x+5D、y=7x-6

  六、课后小结

  1、正比例函数y=kx的图象的特点。2、一次函数y=kx+b的图象的特点。

  七、课堂作业

  课本P1861,2,3,4

八年级《一次函数》教学设计5

  一、教材分析

  本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。

  二、学情分析

  学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。

  三、目标分析

  1、教学目标

  知识与技能目标

  (1)初步理解二元一次方程和一次函数的关系;

  (2)掌握二元一次方程组和对应的两条直线之间的关系;

  (3)掌握二元一次方程组的图像解法。

  过程与方法目标

  (1)教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

  (2)通过做一做引入例1,进一步发展学生数形结合的意识和能力。

  (3)情感与态度目标

  (1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

  (2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

  2、教学重点

  (1)二元一次方程和一次函数的关系;

  (2)二元一次方程组和对应的两条直线的关系。

  3、教学难点

  数形结合和数学转化的思想意识。

  四、教法学法

  1、教法学法

  启发引导与自主探索相结合。

  2、课前准备

  教具:多媒体课件、三角板。

  学具:铅笔、直尺、练习本、坐标纸。

  五、教学过程

  本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置。

  第一环节:设置问题情境,启发引导

  内容:1、方程x+y=5的解有多少个?是这个方程的解吗?

  2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

  3、在一次函数y=的'图像上任取一点,它的坐标适合方程x+y=5吗?

  4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

  由此得到本节课的第一个知识点:

  二元一次方程和一次函数的图像有如下关系:

  (1)以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2)一次函数图像上的点的坐标都适合相应的二元一次方程。

  意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。

  效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。

  前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。

  第二环节自主探索方程组的解与图像之间的关系

  内容:1、解方程组

  2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

  3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

  (1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

  (2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

  (3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

  注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

  意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。

  效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。

  第三环节典型例题

  探究方程与函数的相互转化

  内容:例1用作图像的方法解方程组

  例2如图,直线与的交点坐标是。

  意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。

  效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。

  第四环节反馈练习

  内容:1、已知一次函数与的图像的交点为,则。

  2、已知一次函数与的图像都经过点A(2,0),且与轴分别交于B,C两点,则的面积为()。

  (A)4(B)5(C)6(D)7

  3、求两条直线与和轴所围成的三角形面积。

  4、如图,两条直线与的交点坐标可以看作哪个方程组的解?

  意图:4个练习,意在及时检测学生对本节知识的掌握情况。

  效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。

  第五环节课堂小结

  内容:以问题串的形式,要求学生自主总结有关知识、方法:

  1、二元一次方程和一次函数的图像的关系;

  (1)以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2)一次函数图像上的点的坐标都适合相应的二元一次方程。

  2、方程组和对应的两条直线的关系:

  (1)方程组的解是对应的两条直线的交点坐标;

  (2)两条直线的交点坐标是对应的方程组的解;

  3、解二元一次方程组的方法有3种:

  (1)代入消元法;

  (2)加减消元法;

  (3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

  意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。

  第六环节作业布置

  习题7.7

  附:板书设计

  六、教学反思

  本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。

八年级《一次函数》教学设计6

  教学目标:

  1、理解一次函数与正比例函数的概念以及它们之间的关系;

  2、能根据问题信息写出一次函数的表达式,并会运用一次函数解决简单的实际问题;

  3、经历一次函数概念的认识,和利用一次函数解决实际问题的过程,逐步认识利用函数观点认识现实世界的意识和能力。

  教学重点:

  一次函数的概念以及一次函数和正比例函数的关系。

  教学难点:

  理解一次函数和正比例函数的关系。

  教学方法:

  引导发现、探究指导

  学习方法:

  自主学习、合作学习

  教学工具:

  多媒体

  教学过程:

  一、情景引入

  母亲节快到了,红红想送一大束康乃馨给妈妈,花店老板告诉她,若买10支以及10支以下,每支3元,买10支以上,超过的部分打8折,如果红红买了x支康乃馨(x>10),付给老板y元钱,请写出y与x之间的函数关系式。

  二、探究新知

  1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式?

  (1)有人发现,在20~25时蟋蟀每分鸣叫次数c与温度t(单位:)有关且c的值约是t的7倍与35的差;

  (2)一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值;

  (3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min的计时费(按0。1元/min收取);

  (4)把一个长10 cm,宽5 cm的矩形的长减少x cm,宽不变,矩形面积y(单位:cm2)随x的值而变化。

  2、这些函数解析式有哪些共同特征?

  3、你能仿照正比例函数的概念,归纳总结出一次函数的概念吗?

  4、一次函数和正比例函数有什么关系?

  三、展示归纳(学生做后,解答过程学生说老师写,发动学生纠正和完善并总结归纳出一次函数的概念)

  1、学生先用独立思考,在进行小组讨论,老师准备板书,巡回指导,了解情况;

  2、学生逐一回答,其他学生逐一补充完善;

  3、教师火龙点睛,强调关键。

  四、练习巩固(过渡语:了解了一次函数的概念之后下面老师就来检验一下同学们,看看同学们能判断一个函数是一次函数吗?)(每个练习先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动学生评价完善,教师强调关键地方,在进行下一个练习)

  练习1下列函数中哪些是一次函数,哪些又是正比例函数?

  (1)y=—8x;(2)y=—;(3)y=5 x+6;(4)y=—0。5x—1;

  (5)y= —1;(6)y= —13;(7)y=2(x—4);(8)y=

  练习2已知一次函数y=kx+b,当x=1时,y=5;当x=—1时,y=1。求k和b的值。

  五、小结与归纳(由学生来陈述,百花齐放。教师不做限定,没说到的,教师补充。)

  1、通过本节课的学习,你有何收获?

  2、反思一下你所获得的经验,与同学交流!

  六、作业:必做题:教科书第91页第3题;

  选做题:请写出若干个变量y与x之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项。

  七、板书设计(以课堂生成为准)

  八、课后反思:

  在上一节课,学生整体感受了研究函数的一般思路与方法,但在具体知识理解的深度上还是不够,尤其作业上学生对概念中的自变量的次数理解不够到位。在这节课的学习中,应当促进学生从整体把握的高度深刻的'理解一次函数与正比例函数的概念以及它们之间的关系。在概念的学习中,教师对学生提供的经验性材料太少,仅从正面入手不足以使学生真正理解概念,还必须从侧面和反面来理解概念,通过多举例,多练习来巩固概念。

  教学中,需要分清并抓住本质现象,鼓励学生用自己的语言阐述自己的看法,学生在经历大量源自实际背景下的解析式的分析比较后,抽象概括出它们的一般结构,从而形成一次函数的概念,教师在强调概念需要注意和容易出错的地方。在知识的获取过程中,始终交织着旧知与新知、变与不变、相同与不同的对立与统一,这些都触动着学生对数学学习的情感。

  另外,课前备学生是十分必要的,只有充分了解学生,课时尽量关注每一个学生,做到心中有学生,使每一个学生都参与课堂活动中来,让他们感受到自己是这节课的主角,从而学习数学的积极性提高,降低两极分化。

八年级《一次函数》教学设计7

  教学目标

  1、通过朗读,感受文中饱满、深沉的爱国情感。

  2、了解作者选择有意味的景物组成一个个画面,展现东北大地特有的丰饶美丽的景象。

  3、学习作者采用的人称变化、呼告、排比等表现手法。培养学生对土地、对祖国的热爱之情。

  教学重难点:

  重点:揣摩、欣赏精彩段落和语句。难点:品味作者蕴含在字里行间的深厚情感。

  教学媒体:

  powerpoint课件

  教学用时:

  一课时教学类型:自读课教学过程与方法:

  一、情境导入

  师:同学们,在开始学习新课之前,我们先一起来欣赏一首歌曲——《松花江上》。师:如屏幕所示,这首歌讲述了一件什么事?生:“九一·八”事变。

  师:是的,1931年9月18日,日军在东北制造了震惊中外的“九”事变,东三省沦陷,大批东北人民被迫背井离乡、流离失所,于是就有了这首抒发流浪者心情的歌曲《松》。今天,我们一起来学习端的《土》,用我们的心来感受同样身为流浪者的作者在这篇文章中所蕴含的感情。(点击出示课题)

  二、初读课文,整体感知

  师:《土》是一篇抒情散文,下面我们先朗读课文,初步感受作者的情感。那么,老师是这样安排的,文章只有2段,大家先听录音范读第一段,再一起朗读第二段。在听读和朗读过程中完成屏幕上的要求。(点击显示“初读课文”)

  师:文章的生字词较多,大家要注意下列字词的正确读音。(点击生字)师:大家一齐读出来——(逐个点击)

  师:很好,预习比较充分。那么我们先听录音范读(点击朗读)师:大家觉得朗读者读的怎样?生:很好,情感很投入等(或其他)

  师:对,朗读者情感很投入,让人听了感同身受。那就请大家先酝酿一下情绪,尝试把自己的身心都融入到文章中去。准备好了吗?“土地是我的母亲”开始——

  师:听的出来大家都很用心在读。谁来说说看,你读的时候,从这篇文章中感受到作者的什么感情?生:爱家乡,爱土地(重点:土地)

  师:其实作者一开篇就开门见山告诉我们他对土地的情感?大家找出来生:“炽痛的热爱”

  师:作者对东北的土地有一种“炽痛的热爱”,这与他的出生背景有很大关系。接下来我们来看一下作者的一些情况,就知道作者为什么有这么炽热的情感了。(点击,简单介绍)

  师:我们知道,这篇文章写于1941年,整整十年,作者回去了没有?生:没有。

  师:是的,作者足足流浪了十年。正是因为作者有背井离乡的亲身体验,更有对故土日思夜想的牵挂,才能写下如此炽热、深沉的文章。接下来我们就一起来细细品味这篇文章。

  三、研读赏析

  师:请同学们快速朗读课文,按研究性学习小组分组,以组为单位分工合作完成屏幕上的任务。

  师:第一道题哪个组来?

  师:作者的故乡就是关东大地,那文中哪些内容是对作者故乡土地的描写?描写的.对象是?运用什么手法使景色的描写生动形象?【点击板书】此处重点:第一段的景色描写,描写对象是东北特有的景色(白桦林、高粱、豆粒)和物产(金矿、煤矿)。

  运用修辞手法(比喻,拟人,排比)大量的修饰语(用的好不好?好在哪里?会不会多余?如金黄的豆粒,黑色的土地,红玉的脸庞,黑玉的眼睛)

  师:从这段描写看,东北大地有独特的景色,有丰富的矿产,能用文中的两个词语概括吗?

  生:美丽,丰饶【点击板书】

  师:很好,请坐。除了这一段是作者对故土的描写之外,还有没有?第二段的景色描写,主要是“我”旧日在故乡的土地上生活的情景。师:从描写看,“我”旧日的生活快乐吗?生:快乐。

  师:那现在这种快乐还在吗?生:不在。

  师:从哪里看出来的?生:“埋葬”。

  师:如何理解“埋葬”这词?本义?在这里的含义?生:师:同样是对故乡土地的描写,为什么作者不将两段合起来?

  师:大家一起看,在第一段描写关东大地的景色之后,作者是这样写的:“这时我听到故乡在召唤我,故乡有一种声音在召唤着我。她低低的呼唤着我的名字,声音是那样的急切,使我不得不回去。”

  师:大家说,土地是人吗?不是,那为什么这里作者用女性“她”来称呼土地?哪位同学来说说看?生:是把土地看成是母亲,所以

  师:(小结)是的,作者在这里是把土地看成母亲。前面我们说过,作者对关东大地怀有一种“炽痛的热爱”。面对美丽丰饶的关东大地,作者情不自禁地将她想象成母亲,大地母亲召唤着我,甚至跟我心灵相通。于是,我便自然而然地回忆起旧日我在大地母亲身边生活的幸福情景,也就是第二段景色描写。这是作者情感的步步深入,所以两段景色描写不能合在一起。【点击板书】

  师:在这里我们先停一下,一起回过头来看文章的标题。请一位同学说说看,你是如何理解文章标题的?

  生:作者向土地立下的誓言。

  师:很好。那么你能从文中找出作者发出的誓言吗?

  生:“没有人污秽和耻辱”。(如果时间够就叫学生朗读这一部分)

  师:这里有点奇怪。刚刚我们说,作者把土地看成母亲,所以用女性“她”称呼土地。但这里,“没有人站立”,人称却从“她”变为“你”,是作者写错了吗?

  生:不是。这是作者的誓言,人称上的变化可以使作者的情感表达更亲切,更直接,更强烈。

  师:(小结)不错。我们回过头来纵观全文,作者先通过对故乡景色的生动描写表达对土地的炽爱,跟着将土地想象成母亲,在母亲的召唤下回忆起旧日的幸福生活。然而,旧日的幸福被侵略者埋葬,大地母亲被污辱长达10年。面对这一切,作者炽热的情感达到顶点,将满腔的热情化为热切的渴望,立下铮铮誓言——誓要看到一个(生齐答:更美丽的故乡)【点击板书】。其实,土地也就是一个国家的主权问题,作者爱故乡的土地,也就是(学生答:爱国)。那么到这里,作者的情感从爱故乡的土地升华为爱国,可谓是水到渠成。

  师:作者的情感如此浓烈,除了刚才我们赏析的语句之外,相信这篇文章还有很多富有感情的语句足以打动你,接下来就请几位同学来读一读你认为最有感情最能打动你的语句。

  四、拓展练习

  师:有点欲罢不能的样子,看来大家学了这篇文章之后是深受感染。好,那么就请大家把这种情感化成文字,写一写你们自己的故乡。

  提示:也可以写你喜欢的,或是曾经去过、给你留下深刻印象的地方。不用很长,几句话就可以。(略)

  五、总结(略)

  六、学生齐读课文

  教学后记:

  土地也就是一个国家的主权问题,用1941年9月18日的“九·一八事变”来导入,配合当时的一些历史影片更容易让学生接受,并融入自己的情感。文章是写事变过去十年后,抗日战争正处在十分艰难的时候,所以历史背景很重要,教学中主要联系时代背景,通过反复朗读、品味课文,使学生慢慢地体会作者的思想感情。但对现在的学生来说,这篇文章还是太深了一些,因此教师的引导更显重要,这一点也是做得还不够的地方。

【八年级《一次函数》教学设计】相关文章:

八年级《台阶》优秀教学设计01-26

八年级《苏州园林》教学设计05-09

化学教学教学设计02-10

《咏柳》教学设计08-12

长城教学设计10-08

《习作 》教学设计11-09

角的教学设计11-13

《林海》教学设计09-27

风筝教学设计09-14