《函数》教学反思
身为一名到岗不久的老师,我们需要很强的课堂教学能力,借助教学反思可以快速提升我们的教学能力,快来参考教学反思是怎么写的吧!下面是小编整理的《函数》教学反思,仅供参考,欢迎大家阅读。
《函数》教学反思1
一次函数的图象和性质在实际生活中的应用十分广泛,有行程、温度、利润、电话费等问题,特别是与经济问题相关的问题是近几年各省市中考数学试题中的热点题型。能用一次决实际问题,对发展学生的数学应用能力和建模能力起着非常重要的作用。上完这节课后,我希望学生对这节课的内容能更加熟悉,能更加重视这部分内容;在利用图表信息得到与一次函数表达式有关数据的过程中,体会“数形结合”思想在数学应用中的重要地位。
上完这节课后,受到其他老师和区教研员肯定的是:
1、教态比较自然;课堂给予学生学习时间;学生学习积极性较强,不同层次的学生都在学习。
2、所选例题针对性较强,较有层次。
3、能够把学生出现的问题预测到了。
4、比较注重对学生做题的常规要求,特别是要求学生作图用尺子和圆规。
5、比较注重学生的评价,不管是老师对学生,还是学生对学生的评价。
但也有很多不足的地方:
1、时间安排不够合理,在复习回顾所花的时间过多,这主要是跟我的习惯有关,对于学生讲过的内容,总是再重复一次,致使浪费了不必要的时间;以后上课要多在这些细节的地方注意,避免不必要的浪费时间;自己控制课堂时间的能力还有待加强。
2、学生紧张过度,自己调节能力功底不够,不能及时调节学生情绪,而给学生相互讨论的时间不够充裕,学生与学生,学生与老师之间交流互动的机会不够,致使课堂气氛沉闷。自己应该学会怎么去调控学生的情绪,这也是我今后应该重点学习的。
3、老师包办太多,对学生过于不放心。如在讲解如何求蜡烛燃烧剩下的高度h与燃烧时间t的函数关系式,学生回答:设y=kx+b,那时我就很着急,问:是y与x吗?这时学生就急急忙忙改为h=kt+b。我要的答案有了,但是却把学生的思路打乱了,用我的思路代替了学生的思路。所以用区教研员林日福老师的话说:不要不放心学生,要给学生犯错误的.机会,只有他们自己犯的错,对他们才是最有价值的。
除了以上种种,我认为我需要改进的方面还有很多,特别在一些细节方面,如板书的规范,语言的规范等。一个老师所讲、所写不仅仅是给一个人听、一个人看,学生的一切言行都是以老师的言行做为楷模,所以做为老师更要做好示范。
课堂教学是一个动态的过程,学生的思维又常常受到课堂气氛、突发事件的影响,所学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。
本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。
《函数》教学反思2
1、要让学生的数学学习贴近生活。
数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材。作为一名数学教师,要让学生体会他们学习的是有意义的数学,这些知识是与生活息息相关的,从而激起学生学习数学的兴趣。
学生在享受数学美的同时也深切地感受到生活离不开圆,体会到学习圆的重要性。虽然小学阶段学生已经对圆的有关知识有所了解,但只是一种感性认识,知道一个图形是圆,还没有抽象出“平面上到定点的距离等于定长的所有点组成的圆形叫做圆”的概念。本节课主要是让学生通过观察,把圆与车轮作类比,结合圆规画圆,得出圆的本质特点“圆周上的点到圆心的距离处处相等”后,就容易归纳出圆的定义。点和圆的位置关系也可以从生活中找到原型。已投射的飞镖和靶的位置关系就是一个很好的例子,它是学生既熟悉又比较感兴趣的事物。例1的应用更让学生体会生活中有数学,数学是解决实际问题的工具。
总而言之,本节课确实让学生感到学习数学也就是关注生活,只不过给生活中的这些现象以新的说法。所以抽象的数学也就显得简单了,学生也就更加喜欢学数学了。
2、改变了学习方式。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与交流合作是学生学习数学的重要方式。为此,我在课堂中给学生动手操作的机会,让每位学生用圆规在本子上画圆,同时要求他们动脑,动口,通过画圆过程体会圆的特点,以便于归纳圆的概念。让四位学生分两组合作在黑板上画圆,还让他们谈谈合作成功的经验(一位一定要固定好圆心,另一位一定要拉紧绳子的另一端粉笔头在黑板上绕一周)。所以得出确定圆需要两个要素即圆心和半径。在必要时,也让学生小组合作互相讨论,充分利用集体的智慧,使之能够解决较难的问题。
3、问题设计符合学生的认知规律。
从情境中的车轮到为什么车轮要做成圆形,圆形车轮有什么特点把圆与车轮作类比有什么相似之处……,这些问题的设计非常连贯,学生也很主动地围绕“问题串”思考,自然地得出了圆的概念,解决了本节课的难点。再是例1的具体应用,再次让学生体验数学来源于生活并用于生活。整堂课的设计从简单到复杂,从易到难,符合学生的认知发展规律。
1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径R和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。
2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。
3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。
4、授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,“过程与方法”的目标落实比较好。
在授课时适时引导,使尽可能多的学生真正参与进来,可以采取小组之间竞争评比打分以提高学生的注意力、合作交流、积极发言等各方面的参与情况。当学生回答问题后,无论回答的结果如何,要进行不同程度的关注:对回答结果清晰、正确者给予鼓励;对回答不准确或不正确者,在其他学生纠正的同时也要给予积极参与、回答问题积极方面的鼓励,使不同层次的同学都体会成功的喜悦、参与的必要。
在问题的设计上,一要根据学生的实际情况设计问题,问题难度由浅入深、层层递进,既要有梯度又要给学生留有思考的空间。二要考虑到题量的适度,加大练习量,更好地落实知识与技能目标。
垂径定理教学反思:
垂径定理的推证是以圆是轴对称图形的性质为依据的,因此,垂径定理既是圆的性质---轴对称性质的重要体现,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据。本节内容是本章基础,是圆的有关计算和圆的有关证明的一个重要工具。
根据初三学生的认知水平,我选用引导发现法和直观演示法,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理。这不仅让学生对所学内容留下了深刻的印象,而且充分地调动学生学习的热情,让学生学会学习,学会研究问题的方法,培养学生的能力。
由于明确了教学目标,因此在授课中,新知识的引入与使用过程显得更为流畅,学生也更加的投入。经过这节课的学习,学生基本掌握了垂径定理的本质:2个条件和2个结论,并能在垂径定理的基础上推出其推论。且能应用它们进行简单的计算和证明,较好的达到了教学目标,完成了教学任务,教学效果良好。
本节课也存在着不足和需改进之处:
1、在得出结论后,没有留出足够的时间给学生对定理进行理解和记忆。致使一些中等以下的学生对定理的.内容运用时不熟练。2、在训练中题目较容易,应适当提高学生对新知识的理解体会。不仅要把基础的东西训练牢固,还要适当提高题目的高度,让不同的学生都有所获,都能体会到成功的快乐,长此以往学生便对数学产生兴趣,提高成绩也就容易了.
这几年我一直在探究复习课的上法。特别是我校开展了数学课堂有效性的探究课题一来,怎样使复习课有趣有效,成为我们数学教师的探究重点。对于复习课,学生总会认为是自己学过的知识,学得没劲,老师上得累,学生学得腻。效果往往不理想,如何上好复习课,提高复习效果?怎样才能让学生主动参与,自主探究呢?
一、有时由于时间紧张。
没有给学生系统的将知识串一下,只是就题讲题,只是给学生了几条鱼,而没有给他们渔;所以首先应对本章的知识点进行系统的梳理。复习课要把旧知识进行整理归纳,这一过程,就是将平时相对独立的知识点串成线,连成片,结成网。如果教师对复习问题面面俱到,学生会感到乏味,引不起兴趣,往往不能深入思考,张口就来,老师成了课堂的主角,学生则是被动接受,老师感到累而学生思维受到限制。因此,在课堂上通过问题的解决整理归纳学过的知识,把学习的主动权交给学生,取得效果较好。
二、其次要提炼方法形成知识结构
圆有哪些性质?三大性质定理学生首先要明确,以及各自适用的的题型。点与圆、线与圆、圆与圆的关系分别是什么?有关的题型又是什么?在讲课时通过典型的代表性的题目的讲练结合,学生可以通过解题后的反思提炼方法,形成知识结构,加深了对定理的理解。复习不是知识的简单再现,在复习过程中,教师也应是坚持启发引导学生发现思维误区,总结方法为主,辅之以精讲。充分发扬教学民主,给学生以足够的思维空间,对于解题思路的探讨过程,让学生真正理解,从而提高复习质量和复习效率。
三、再有要留给学生足够的时间来消化一节课中所学到的知识。
切记不能为了赶课程而让学生获得的知识成为“夹生饭”应让学生自己先整理一下知识点,上课教师再补充一下,使学生能系统的掌握知识;老师们往往有这样的感觉:上复习课时间总是不够用。
即使这样我们也要给学生足够的消化吸收的时间,否则,老师的任务完成了,而学生大都在一片迷糊中,这样的课就没有什么效果了。圆这一部分的复习我是安排了四节课,相对来说,效果还是不错的。
《函数》教学反思3
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握 求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。
教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的'方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐 和成就感。在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。同时也注重对解题方法与解题 模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。
就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。
《函数》教学反思4
本节教学内容是《二元一次方程与一次函数》,这节课以“回顾,提问”为先导,以“操作,思考”为手段,以“数,形结合”为要求,以“引导,探究”为主线,处处呈现出师生互动,生生互动的景象,较好地体现了新的课程理念与要求,充分让学生自主探究,合作交流,时刻注重学生学习过程的体验与评价。 新的课程标准提出:数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上,教师应帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、教学思想和方法,获得广泛的数学活动经验。由此,我设计了本节课的教学设计,基于上完课后的感想,我对本节课有如下的反思:
一、 成功之处:
1、 从旧识引入,自然过渡
这节课由复习一次函数解析式和二元一次方程的形式引入,再提出x+y=5是一次函数还是二元一次方程这一问题,进而引出本节课的第一个内容,激发了学生的兴趣,使他们更快的融入课堂。
2、 在操作中,提出问题,深化认识
对于此阶段学生来说,他们乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生主动发现问题,本节课我让学生亲自动手操作画出一次函数的图像,并解出二元一次方程的解,在画图过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图像上”,接着引导学生反思:“一次函数图像的点坐标都适合相应的二元一次方程吗?”通过举例、验证,得出结论。同样,在探索二元一次方程组与一次函数关系时,也是在操作中发现问题,这样就给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。
3、 以能力培养为核心,引导探索为主线,数形结合为要求
能力的培养是以自主探究为平台,我通过让学生小组交流合作并讨论来解答几个问题,进而得出结论,培养了他们的发现、分析、解决问题、归纳总结的能力。再由二元一次方程与一次函数的关系进一步扩展到二元一次方程组与一次函数的关系,层层递进,学生基本掌握了本节课的重点、难点问题。通过总结二元一次方程组的解法:加减、消元、图像法,通过分析他们的'优缺点可知图像法得出的解是近似的这一结论,让学生又体会到了数学的严谨性。在教学过程中,我充分渗透了数形结合的思想,让学生体会了数学的美。
二、 失败之处
1、 学生自己画图时不好确定交点坐标,在做这样的题时,就一定会存在如何确定交点的精确度问题,从而使学生会认为应用图像法来解二元一次方程组的方法无用处,进而不重视本节课的内容。
2、 教学过程中,在探索二元一次方程与一次函数关系时,提出的问题与ppt课件中展示的问题部分重复了,浪费了一些时间,板书设计不够简洁。
三、 针对以上不足之处我做了如下改进:
1、 对于交点坐标问题,应该跟同学们讲解清楚,我们要求的是掌握这个解二元一次方程组的图像解法,我们借助科学技术很容易画出一次函数的图像,也就容易找到交点的精确坐标。此外,一般来说如果考试当中是会给出交点的坐标。
2、 重新整理资料,将一些重复问题删去,提取结论中一些重点语句,关键词,板书做到精炼。
《函数》教学反思5
因教研组活动的安排需要,本周二我作为初四代表出示研讨课,课题为《二次函数的应用——————形如抛物线型》,结合老师的评课反思一下:
我的设计思路是:前置补偿(确定二次函数解析式的方法和思路)———————探索新知(由前置补偿第四小题过渡到问题一,目的在于体会数学与实际问题的转化,并得出确定实际问题中解析式的关键在于有实际意义得出关键点的坐标;然后过渡到没有坐标系的实际问题中,该怎么处理,有学生探索并分情况展示,然后比较过程与结果,增强优化意识。另一方面由实际问题的解决,体会二次函数应用中的数学思想:第一环节,实际意义—→关键点的坐标—→解析式,注意由实际意义到点的坐标转化时的符号,进一步明确解决问题的第二个环节,解析式—→关键点的坐标—→实际意义,注意由坐标到实际意义转化时要取绝对值。)—————活学活用(解决一个隧道问题,目的加强对思路的理解与体会,从本节课上也提高一下难度,但因时间关系,没有完成)。
评课整理如下:
优点:
思路比较清晰,过渡比较自然,题后反思比较到位。
缺点:
1、孙老师:对学生的评价比较模糊,比如有错误的情况下还打个对号。
2、郭老师:解题步骤需加以规范和总结:一建二设三解四答。
3、张老师:知识总结有些地方不太到位,比如,三种不同的情况为什么a的取值不变?比较三种的优劣时可以从两个方面进行即确定解析式和解决最后实际问题。这样可以更体会更深刻一些。
4、付主任:本节课有宽度,但缺乏深度,容量比较小,学案可以在浓缩一下,可以将问题一和问题二结合起来。
5、齐主任:课堂模式和反映出来的教学理念比较过时,以学生为主体的教育理念体现的不够突出,如果把这节课放在课改之前可能是一堂好课。
自我反思:
1、从郭老师、张老师和孙老师的建议中,我应该加强对课的精细化要求,授课态度要严谨,对学生的一点一滴都要负责任,同时对教材知识的挖掘面面俱到,引领学生对知识能有一个更全面更深入的理解。
2、受付主任建议的启发,可以尝试删掉问题一,由问题二承担起原问题一和问题二的双重作用,即:实际意义确定点的.坐标;建立适当的坐标系。可以仍有第四小题引入到问题二(建好坐标系,顶点在原点处),然后实际问题中不可能存在现成的坐标系,引发学生思考坐标系的建立情况,然后加以拓展,并结合解决实际问题体会三种情况的优劣。这样应该可以节省一些时间,但我估计不会太多,最多能节省5分钟,但这或许就可以分析活学活用中的题目了。
自己的体会是,因为这是第一课时,很多东西不可能面面俱到,知识的理解还需要有个循序渐进的过程(或许这也是一个托辞,这就是我们与名师的差距)。与名师相比,我们的课堂容量太小,一方面我们平时的课堂对知识中的思想方法挖掘渗透的太少,学生头脑中的知识不系统,形不成知识体系;另一方面,与本人的知识素养有关系,还需要进一步对教材知识进行深入挖掘,对新的教育理念进行学习,只有准备充足了,才能在课堂上游刃有余。
3、结合齐主任的评课,我站在别人的高度试想了如果是云老师或宋老师来评课,会提出什么意见,我隐约感觉到这肯定不是一节好课,有很大的问题,至于是什么问题我也说不清楚,或许就如齐主任所说的教育理念比较陈腐导致课堂没有推陈出新的亮点,并且我觉得可以做大手术,如果真能请云老师或宋老师来评课的话,我或许就会豁然开朗,而不再这般的迷茫。
《函数》教学反思6
对于二次函数总体复习的时间定为三个课时。
1、基本知识与性质。
2、待定系数法。
3、应用。
一、本章主要内容有:
1、概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数;可以化掉二次项的函数;以及二次项系数可能为零的函数。
2、待定系数法求解析式。设解析式有三种形式,一般形式,双根式,顶点式。另外还有根据实际问题求解析式。特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。
3、图文信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。
4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是“上加下减,左加右减”。
5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和―1时的函数值来确定。
二、成功之处:
(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(―1,―6),并且该图象过点P(2,3),求这个二次函数的表达式中,设计了两个问题:
1、通过已知顶点A的坐标(―1,―6),你从中还能获取什么信息?
2、在不改变已知条件的`前提下,你能选用“一般式”吗?
设计意图是:
1、由顶点(―1,―6),可知对称轴是直线x=―1,函数的最大(小)值是―6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。
2、挖掘顶点坐标的内涵:
(1)由抛物线的轴对称性,可求出点P(2,3)关于对称轴x=―1对称点P’的坐标是(―4,3);
(2)用点A、点P和对称轴;
(3)用点A、点P和顶点的纵坐标等。
3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。
(二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。
三、遗憾之处:
在课题引入后,由于对学生估计不足,复习中学生还习惯有老师引着做,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。
《函数》教学反思7
教后记函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质,通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一。另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达。围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:
1.重视学生的亲身体验.具体体现在两个方面:(1)将新知识与学生的已有知识建立了联系,引导学生借助已学过的一次函数、二次函数的图象,从图象分析入手,使学生对增、减函数有一个直观的感知,完成对函数单调性的第一次认识。教学中通过一次函数、二次函数两个具体函数的图像及数值变化特征的研究,得到“图象是上升的”,相应地即“y随着x的增大而增大”,初步得到单调性的说法,通过讨论交流,让学生尝试就一般情况进行刻画,提出函数单调性的定义,然后通过辨析、练习等帮助学生理解这一概念。(2)运用新知识尝试解决新问题,重视学生的动手实践过程,通过对定义的解读、巩固,让学生动手去实践运用定义.
2.重视课堂问题的设计。通过对问题的设计,引导学生解决问题。
3.重视方法的生成。用函数单调性的定义证明函数的.单调性,将证明过程步骤化,形成思维定势,在学生刚刚接确一个新的知识时,思维定势对理解知识本身是有益的。使用函数单调性定义证明是本节课的一个难点,学生刚刚接确这种证明方法,给出一定的步骤是必要的,有利于学生理解概念。
当然本节课还是有些不足之处,忽视是课本上的一个重要的例题,反比例函数单调性的证明。这是一个重点,却在本节课的没有讲到,所以本节课的安排还是顾此失彼了,驾驭课堂的能力还是有所欠缺的。这点我还要继续努力。
《函数》教学反思8
这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版A版数学必修一的内容。
通过这节课的教学,我主要有以下三点收获:
授课的致用性:
大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的.学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的欣赏。
碳14的对数公式
则是今天导课的重要兴趣吸引点。
信息技术的应用
多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。
作业布置的探索性尝试
(1)上百度,知乎查阅考古年代的推断方法及碳14的相关应用.
(2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。
当然,本节课还是有很多没有想到。也有三点。
1、内容的繁多性
总是认为本节课内容简单,要多讲一点,把可能的题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。
2、师生互动的简单重复
发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。
3、授课中的德育环节
其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。
《函数》教学反思9
教材分析:
本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。
教学片段:
本节课我是这样设计引入的。
[师] y=3x2的图象有何特点?
[生]很快能说出函数图象以及相关的性质。
[师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?
此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。
[师]y=3x2-6x+5的图象与y=3x2有何关系?
[生]猜想:向上平移5个单位,向左右平移6个单位。
[师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的`图象(板书课题)
教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。
此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。
[师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?
[生]可以先研究y=3(x-1)2的图象。
前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。
让学生完成课本P46的表格。
在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。
此处的设计是要让学生学会观察,从表格里发现函数图象的平移。
[师]根据表格所提供的坐标,大家去猜想y=3(x-1)2与y=3x2的图象有何关系?
[生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。
[师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。
通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。
教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。
反思:
函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。
《函数》教学反思10
信息技术课是学生感兴趣的课程,认为这是放松课,那么如何使同学们在放松中学习知识,又在学习过程中放松精神,就是教师应该考虑的关键问题了。个人认为教师首先要有一种饱满的激情,用你的激情去激发学生,感染学生,同时课堂上的举例练习应贴近学生的学习与生活,使他们对学习产生兴趣。
关于课前准备的反思
(一)我首先对本节课的知识难易度进行了分析,也对学生前面两节学过的知识进行了总结,从而确定了本节课的教学目标、教学重点、教学难点、教学方法,并在教学设计上做了精心的准备。
(二)教学设计。本节课是学习如何掌握公式计算的基础上学习函数运算,重难点是要掌握如何使用函数向导找到所需函数,选择正确的计算区域得出结果,这里以SUM和AVERAGE 函数为例讲解,给予学生一定的指引,剩下的函数,要求学生自主学习。
关于教学实践中的反思
(一)在教学过程中,教学任务的.提出要由浅入深、循序渐进,本节课要求学生先求出每个同学的总分,再求个人平均分,这时就有一个问题出现了:有的同学求平均分时的取值区域选择不正确,以致结果出错,教师就应给予一定的指引:为什么会这样?原因就是数值区域的选择,即总分也在计算范围内了,同学们就会解决了。这样的过程远比老师演示如何去做好得多,学生会更深刻地理解计算区域应如何选择。
(二)同学们在熟练了SUM函数、AVERAGE函数的使用后,会觉得利用函数运算很简单,也很方便,此时就再提出新的任务,如何将成绩表按总分递减排序?要求学生自主学习,为下节课做好准备。
关于教学实践后的反思
(一)对于教师“教”的反思
在这节课中,重、难点是函数运算时数值区域的选择与排序时的数据选择,教师“教”了前者,然而在细节的地方没有讲解到位:计算矩形数值区域的表示方法为A1:E1,中间是由冒号连接,如再需要计算单个数值应用逗号(,)隔开,这里没有讲解到位,学生就只掌握输入这个数值,未全面理解知识点,了解了知识的延伸。
(二)对于学生“学”的反思
学生通过自主学习,观看课件并完成其他学习任务,学生对这种教学模式还没有完全适应,在学的过程中会出现看不懂的情况,或者看懂了又不会操作,这就是理论与实践不能有机结合的体现,在今后的教学过程中,应注意培养学生自学的能力。
关于教学行为的反思
(一)教师是整节课的穿针引线者,而本节课我在引导学生的过程中有一定欠缺,没能够即时将学生遇到的问题解答:为什么排序时不能只选择总分?只是将问题提出了,虽然学生解决了,但是教师应在总结时将这一知识点讲解一下,以便加深学生对知识的理解。
《函数》教学反思11
记的有一次教函数,我想激发学生的兴趣,上课前我设计了两个实际生活问题的问题,想由此导入新课并引出二次函数的概念。实际上这完全依赖于学生对以前一元二次方程解应用题的复习,可学生不能较快的回忆起以前所学的知识,致使我不得不从新分析这两个应用题,这导致了我原计划5分钟时间完成的教学进度,结果化了很长时间,学生还是不懂,跳过不讲,又怕学生真的没懂,说他们听懂了,可有没有几个学生回答问题。结果可想而知,只是导出了二次函数的概念,没有进行深入的拓展理解练习。
课后我认真反思了这堂课,效果不好的原因最主要是对学生的期望过高,而没有真正分析学生的.特点,一是下午,学生的反应在太阳光的照射下本来就较疲惫;二是学生对原有知识的学习已有较长的间隔时间,而这一个面积问题,一个经济问题对学生来说本来就有难度,何况这班的学生基础很差。基于以是原因要想在这堂课上获得学生的支持和较高程度的配合是不可能的。一切都主要归结于对学情没有做出合理的分析。
《函数》教学反思12
本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k (h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意 “类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。
通过本节课教学,得出几点体会:
1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。
2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。
3、要使课堂真正成为学生展示自我的.舞台。
还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课
堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。
1、某些记忆性的知识没记住。
2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气
3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。
4、解题过程写得不全面,丢三落四的现象严重。
针对上述问题,需要采取的措施与方法是:
1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。
2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。
3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。
4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。
5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。
《函数》教学反思13
一、本节课的整体设计
第一步:预习,学生通过自学课本、独立完成导学案,完成自己会的,找出并标记出不会的,完成预习。
第二步:组内合学,通过组内对学、群学,展示学会的,学会不会的。教师设计引导,完成对反比例函数更清晰和准确的认识。
第三步:班级展示,通过学生对学习情况的展示,教师有针对性的进行课堂点拨追问,完成本节课的学习。
第四步:整理反思,通过课堂学生与学生之间,教师与学生之间的互动交流,修正学案内容,并形成自己的反思总结。
第五步:达标测评,对本节课的基础知识和技能进行学习反馈,教师了解掌握学生学习情况,便于下一阶段的学习。
二、本节课突出了“四本”的`基本要求
1、以学生为本,整个课堂充分放手让学生去学习,以学生为主体,调动了学生的积极性。
2、以文为本,课堂活动以课本为基础,围绕课本知识展开活动,突出了课本的设计意图。
3、以实为本,课堂真实有效,学练结合,具有很高的实用性。
4、以真为本,课堂不做假,真实的展现了学生的学习思路和思考过程,课堂以真为本更显实效和高效。
三、本节课的不足
1、教师放手不够,还是担心学生学不到位,没有充分的放手把学习还给学生。
2、课堂的整个流程还需进一步细致打磨,让每一个环节更适合学生的学习,才能有更高效的学习效率。
不足之处还需各位专家老师指正,谢谢!
《函数》教学反思14
复习目标:
知识目标:
1、了解二次函数解析式的三种表示方法,抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;
2、一元二次方程与抛物线的关系.
3、利用二次函数解决实际问题。
技能目标:
培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。
情感目标:
1、通过问题情境和探索活动的创设,激发学生的学习兴趣;
2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。
复习重、难点:函数综合题型
复习方法:合作交流
复习过程:
一、知识梳理
1、二次函数解析式的三种表示方法:
(1)顶点式:(2)交点式:(3)一般式:
2、填表:
抛物线对称轴顶点坐标开口方向
y=ax2
当a>0时,
开口
当a<0时,
开口
Y=ax2+k
Y=a(x-h)2
y=a(x-h)2+k
Y=ax2+bx+c
3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而
4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值
自评分(每空4分,共100分)
二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)(屏幕显示)
已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:
(1)abc(2)b2-4ac(3)2a+b(4)a+b+c
(上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x=1时y的值)
2、已知抛物线y=x2+(2k+1)x-k2+k
(1)求证:此抛物线与x轴总有两个不同的交点;
(2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22=-2k2+2k+1,①求抛物线的解析式
②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。
(此题主要考查抛物线与一元方程的.根的判别式、根与系数的关系的联系,以及函数与几何知识的综合)
三、归纳小结:
提问:通过本节课的练习,你得到了什么?
四、用数学(利用二次函数解决实际问题)
一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,
(1)根据题意建立直角坐标系,并求出抛物线的解析式。
(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?
(此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。)
五、拓展提升(供学有余力的学生做):(屏幕显示)
已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0),B(x2,0),(x1≠x2)
(1)求a的取值范围,并证明A、B两点都在原点的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。
课堂反思:以前的复习课总是写满几块小黑板,弄得手上全是粉笔末,一节课下来,光是翻转小黑板就把自己搞得迷迷糊糊,并且学生还喊道:看不清楚。现在好了,利用多媒体,可以把要讲的知识点、学生要做的练习毫不含糊地全部展示给学生,确实做到了高容量、大密度。感觉很好。
《函数》教学反思15
1、常态课,没有太多的做作。
没有制作课件。但若是把要让学生回答的各种性语言,制作成PPT。若用上这种课件,效果应当会更好一些。
2、在一个班讲,变成了两个班合班上。
造成我展示中等生学习情况的不太明显。原第一节课,我是要设计板书和教学环节。可是,因为语文老师不在,我只好合班上课,给学生讲解二次函数的应用题。没有时间多考虑我第二节的公开课了。
3、课越想,越复杂。
这一点可能与上面的矛盾,但还是想把自己的感觉说出来。因为要公开,因为要让别人来看我的课,星期六日,我又在脑子中过了几次教学环节,重点是总结二次函数与一元二次方程的关系,难点是当二次函数与x轴的有交点时,交点的横坐标等于令y=0得一元二次方程的根。
4、越俎代庖的地方还比较多,即:能让学生自己处理的地方,没有让学生来处理。
本节课只让8个学生回答了问题。从观念上说,我还是不相信学生,认为学生没有自我教育的能力。第一个地方:让江紫露、陈俣希、陈晓娜,解三个方程,江紫露忘了公式了,我赶快板书了公式。实际上,我可以让优生给予帮助,而我却越俎代庖了。第二个地方:总结一元二次方程的根有____种情况时,我怕学生忘了,不会写。更怕公开课怕丢人,也为了节约时间,没有先问学生,就顺手标出。实际上这也是另一种形式的丢丑。今后应相信学生,毕竟学习是他们自己的'事。第三个地方:学生用几何画板画三个函数时,陈俣希一个,江紫露则画了两个。我原来设计的应当是三个学生。我为了省事儿,就让一个学生做了两个。没有给哪些会画的差生任何机会。
5、语言的规范、简洁与手语的准确到位还有待提高。
在总结一元二次方程解法时,我临时没计了一个问题,“解一元二次方程________法最好。”显然这是错误的表达,不成熟。应改正:“一元二次方程的解法有哪些?你喜欢哪一种,为什么?”
6、出现了一次较为成功的教学机智。
在总结三个函数与x轴交点的情况时。我写了第一个范式,让张晓青填空。和其他学生讨论这个问题。后来派刘彦涵第二个,郭伟第三个。这两个学生则出现了错误,第一个学生把与x轴的交点、与y轴的交点,给混淆了。第二个学生把方程的无解,直接抄到了函数中,说无解。我抓住了这两点,即时讲解了本节的难点,这样也就较为容易的突破了它,又补充了求函数与y轴的交点的情况,算是一种延伸。
【《函数》教学反思】相关文章:
函数的概念教学反思04-12
函数的概念教学反思8篇04-15
二次函数教学反思04-17
反比例函数教学设计03-07
三角函数教学课件02-24
《让》教学反思12-12
教学的反思01-07
教学dtnl教学反思12-26
教学反思和课后反思12-08