初中数学优秀教案

时间:2024-10-19 12:31:19 教案 我要投稿
  • 相关推荐

初中数学优秀教案

  在教学工作者实际的教学活动中,就难以避免地要准备教案,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?下面是小编精心整理的初中数学优秀教案,希望对大家有所帮助。

初中数学优秀教案

初中数学优秀教案1

  教学目标

  1. 使学生掌握不等式的三条基本性质;

  2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.

  教学重点和难点

  重点:不等式的三条基本性质的运用.

  难点:不等式的基本性质3的运用.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1. 什么叫不等式?说出不等式的三条基本性质.

  2. 当x取下列数值时,不等式1-5x<16是否成立?

  3,-4,-3,4,2.5,0,-1.

  3. 用不等式表示下列数量关系:

  (1) x的3倍大于x的2倍与5的差; (3)y的'与x的的差小于2;

  (2) y的一半与4的和是负数; (4)5与a的4倍的差不是正数.

  4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:

  (1)m>n,两边都减去3; (2)m>n,两边同乘以3;

  (3)m>n,两边同乘以-3; (4)m>n,两边同乘以-3;

  (5)m>n,两边同乘以 .

  (以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。

  二、讲授新课

  例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.

  (1)若a–3<9,则a_____12; (2)若-a<10,则a_____–10;

  (3)若a>–1,则a_____–4; (4)若-a>,则a_____0.

  答:(1)a<12,根据不等式基本性质1. (2)a>-10,根据不等式基本性质3.

  (3)a>-4,根据不等式基本性质2. (4)a<0,根据不等式基本性质3.

  (在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=

  例2 已知,用a<0,“<”或“>”号填空:

  (1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

  答:(1)a+2<2,根据不等式基本性质1. (2)a-1<-1,根据不等式基本性质1.

  (3)因为3a,根据不等式基本性质2. (4)->0,根据不等式基本性质3.

  (5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.

  (6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。

  (7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.

  又已知,-1<0,所以a-1<0.

  (8)因为。a<0,所以a≠0,所以|a|>0.

  (本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)

  例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)

  (1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为a<b,所以<>'

  (5)因为>-1,所以a>4; (6)因为-1>-2,所以-a-1>-a-2;

  (7)因为3>2,所以3a>2a.

  答:(1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1.

  (3)正确,根据不等式基本性质2. (4)不对,根据不等式基本性质3,应改为>; (5)因为>-1,所以a>4

  答:(1)正确,根据不等式基本性质3。 (2)正确,根据不等式基本性质1。

  (3)正确,根据不等式基本性质2。 (4)不对,根据不等式基本性质3,应改为。

  (5)不对,根据不等式基本性质5,应改为a<4。

  (6)正确,根据不等式基本性质1。 (7)不对,应分情况逐一讨论。

  当a>0时,3a>2a。(不等式基本性质2)

  当a=0时,3a<2a。

  当a<0时,3a<2a。(不等式基本性质3)

  (当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

  三、课堂练习(投影)

  1。按照下列条件,写出仍能成立的不等式:

  (1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;

  (3)由7>5,两边都乘以不为零的-a。

  2?用“>”或“<”号填空:

  (1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;

  (3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;

  (5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。

  四、师生共同小结

  在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。

  五、作业

  1。根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:

  (1)x-1<0; (2)x>-x+6;

  (3)3x>7; (4)-x<-3。

  2。设a<b,用“>”或“>”号连接下列各题中的两个代数式:

  (1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;

  (4); (5); (6)-b,-a。

  3。用“>”号或“<”号填空:

  (1)若a-b<0,则a_____b; (2)若b<0,则a+b_____a;

  (3)若a=0,则a+b_____b; (4)若<0,则ab_____;

  (5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

  课堂教学设计说明

  由于本节课的教学目标是使学生进一步掌握不等式基本性质,尤其是基本性质3。故在设计教学过程时,注意在教师的主导作用下让学生以练为主,从而使学生在初步掌握不等式的三条基本性质的基础上,通过口答,笔做,讨论等不同的方式的练习,提高学生将不等式正确、灵活进行变形的能力。

初中数学优秀教案2

  一、教学目标

  知识与技能:使学生了解正数与负数是从实际需要中产生的;

  过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;

  情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

  二、教学重点和难点

  负数的引入和意义

  三、教学过程

  创设情景,生活实例引入,观察猜想,合作探究

  (一)、从学生原有的认知结构提出问题

  大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

  为了表示一个人、两只手、……,我们用到整数1,2,……

  为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4。87、……

  为了表示“没有人”、“没有羊”、……我们要用到0。

  但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

  (二)、师生共同研究形成正负数概念

  某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。

  它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多。

  例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的。

  又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的。

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量筒明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;

  运进纲物 吨,记作+ ;运出货物 吨,记作— 。

  教师讲解:什么叫做正数?什么叫做负数。

  强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的.符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号

  (三)、运用举例 变式练习

  例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

  —11,4,8,+73,—2,7, , ,—8,12, — ;

  正数集合 负数集合

  此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合

  课堂练习

  任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

  正数集合:{ …},

  负数集合:{ …}

  四、课堂小结

  由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“—”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃

  五、作业布置

  1。北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

  2。在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着—392,这表明死海的湖面与海平面相比的高度是怎样的?

  3。在下列各数中,哪些是正数?哪些是负数?

  —16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。

  4。如果—50元表示支出50元,那么+200元表示什么?

  5。河道中的水位比正常水位低0。2米记作—0。2米,那么比正常水位温0。1米记作什?

  6。如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?

  7。一物体可以左右移动,设向右为正,问:

  (1)向左移动12米应记作什么?(2)“记作8米”表明什么?

初中数学优秀教案3

  教学目标:

  1、掌握一元二次方程的根与系数的关系并会初步应用。

  2、培养学生分析、观察、归纳的能力和推理论证的能力。

  3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。

  4、培养学生去发现规律的积极性及勇于探索的精神。

  教学重点与难点:

  重点

  根与系数的关系及其推导

  难点

  正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。

  教学过程:

  一、复习引入

  1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。

  2、由上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

  3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

  二、探索新知

  解下列方程,并填写表格:

  方程x1 x2 x1+x2 x1x2

  x2-2x=0

  x2+3x-4=0

  x2-5x+6=0

  观察上面的表格,你能得到什么结论?

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

  (2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

  解下列方程,并填写表格:

  方程x1 x2 x1+x2 x1x2

  2x2-7x-4=0

  3x2+2x-5=0

  5x2-17x+6=0

  小结:根与系数关系:

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)

  (2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论。

  即:对于方程ax2+bx+c=0(a≠0)

  ∵a≠0,∴x2+bax+ca=0

  ∴x1+x2=-ba,x1x2=ca

  (可以利用求根公式给出证明)

  例1不解方程,写出下列方程的`两根和与两根积:

  (1)x2-3x-1=0   (2)2x2+3x-5=0

  (3)13x2-2x=0 (4)2x2+6x=3

  (5)x2-1=0 (6)x2-2x+1=0

  例2不解方程,检验下列方程的解是否正确?

  (1)x2-22x+1=0 (x1=2+1,x2=2-1)

  (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

  例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?)

  例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。

  变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

  变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

  三、课堂小结

  1、根与系数的关系。

  2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零。

  四、作业布置

  1、不解方程,写出下列方程的两根和与两根积。

  (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

  (4)3x2+x+1=0

  2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。

  3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

初中数学优秀教案4

  学习方式:

  从具体问题情景中探索体会合并同类项的含义。

  逆用乘法分配律探求合并同类项法则。

  通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

  教学目标:

  1、在具体情境中理解、掌握同类项的定义;

  2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

  3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

  4、通过“合并同类项”的学习,继续培养学生的运算能力。

  教学的重点、难点和疑点

  1、重点:同类项的概念,合并同类项的法则。

  2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

  3、疑点:同类项与同次项的区别。

  教具准备

  投影仪(电脑)、自制胶片

  教学过程:

  提出问题

  创设情景 (出示投影)

  如图的长方形由两个小长方形组成,求这个长方形的面积。

  ①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

  (8+5)n

  ②接着引导学生写出等式:

  8n+5n=(8+5)n=13n

  启发学生观察上式是怎样的一种变化;

  它类似于我们前面学过的什么运算律

  为什么8n与5n可以合并成一项(组织学生充分

  讨论,从而引出同类项的概念)

  ③同类项的概念

  举出一些具有代表性的同类项的实际例子。

  如:-7a2b , 2a2b ;

  8n , 5n ;

  3x2, -x2

  引导学生观察上面给出的几组代数式具有什么共同特点:

  ①所含的.字母相同

  ②相同字母的指数也相同

  教师顺势提出同类项的概念

  强调同类项必须满足以上两条

  ④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。 学生观察,思考

  讨论交流

  (反例巩固) 出示问题;

  x与y,

  a2b与ab2,

  -3pa与3pa

  abc与ac,

  a2和a3 是不是同类项

  (给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

  其中:a2b与ab2可让学生充分讨论交流。

  (教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)

  (引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

  紧扣定义

  加以判别

  例1 根据乘法分配律合并同类项

  (1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

  (教师强调乘法分配律的逆运用)

  (学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

  由此引导学生总结出合并同类项的法则:

  在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。

  学生思考

  解答(找二生板演其他学生独立写出过程)

  总结法则

  可根据情况适当复习关于乘法分配律的有关知识

  通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

  应用法则

  例2,合 并同类项

  ①3a+2b-5a-b

  ②-4ab+8-2b2-9ab-8

  给学生留有足够的独立的思考时间

  找二生到黑板上板演。

  学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

  强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

  教师不给任何提示

  学生在练习本上完成,然后同桌同学互相交换评判。

  (二生到黑板上板演)

  变式

  应用 补充例题

  例3,求代数式的值

  ①2x2-5x+x2+4x-3 x2-2 其中x=

  ②-3 x2+5x-0.5 x2+x-1 其中x=2

  出示 例题后,教师不要给任何提示,先让学生独立思考。

  部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

  问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

  独立完成

  分析比较

  寻求简便方法

  随堂

  练习 1、合并同类项

  ①3y+ y=__________

  ②3b-3a2+1+a3-2b=____ _______

  ③2y+6y+2xy-5=_____________

  2、求代数式的值

  8 p2-7q+6q-7p2-7

  其中p=3 q=3

  练习交流合作

  教师可根据情况适当补充

  小结 今天你学会了哪些知识?获得了哪些方法,

  有什么体会? 自己总结

  作业 教材课后习题

初中数学优秀教案5

  知识点:

  因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

  教学目标:

  理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

  考查重难点与常见题型:

  考查因式分解能力,在中考试题中,因式分解出现的`频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

  教学过程:

  因式分解知识点

  多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

  (1)提公因式法

  如多项式

  其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

  (2)运用公式法,即用

  写出结果。

  (3)十字相乘法

  对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

  (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

  分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

  (5)求根公式法:如果有两个根X1,X2,那么

  2、教学实例:学案示例

  3、课堂练习:学案作业

  4、课堂:

  5、板书:

  6、课堂作业:学案作业

  7、教学反思:

初中数学优秀教案6

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的

  为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的收入与支出是“意义相反”的两回事,是不能用同一个数来表达的因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的.大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学优秀教案7

  教学内容:

  教科书第76页,整式的加减单元复习。

  教学目的和要求:

  1.使学生对本章内容的认识更全面、更系统化。

  2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。

  3.通过复习,培养学生主动分析问题的习惯。

  教学重点和难点:

  重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。

  难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。

  教学方法:

  分层次教学,讲授、练习相结合。

  教学过程:

  一、复习引入:

  1.主要概念:

  (1)关于单项式,你都知道什么?

  (2)关于多项式,你又知道什么?

  引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。

  (3)什么叫整式?

  在学生回答的`基础上,进行归纳、总结,用投影演示:

  整式

  2.主要法则:

  ①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?

  ②在学生回答的基础上,进行归纳总结:

  整式的加减

  二、讲授新课:

  1.例题:

  例1:找出下列代数式中的单项式、多项式和整式。

  ,4xy, , ,x2+x+ ,0, ,m,―2.01×105

  解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;

  整式有4xy, ,0,m,-2.01×105, 。

  此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。

  例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。

  解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;

  xy5:系数是 ,次数是6; :系数是― ,次数是9。

  此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。

  例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?

  解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。

  例4:化简,并将结果按x的降幂排列:

  (1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);

  (3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。

  解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。

  通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题。

  例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。

  解:化简的结果是:3ab2,求值的结果是 。

  例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。

  解:此多项式为3x3―5x2y―2y3;值为― 。

  3.课堂练习:

  课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7

  四、课堂作业:

  课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9

  板书设计:

  教学后记:

  ①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。

  ②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。

初中数学优秀教案8

  教学目的:

  1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、提高分析数量关系的能力,培养学生思维的灵活性。

  3、在积极参与数学活动的过程中,树立学好数学的信心。

  教学重点、难点:

  引导学生独立分析问题,找出题目中的等量关系。

  教学对策:

  在积极参与数学活动的过程中,树立学好数学的信心。

  教学准备:

  教学光盘

  教学过程:

  一、复习准备

  1、解方程(练习一第6题的第1、3小题)

  4x+12=50 2.3x-1.02=0.36

  学生独立完成,再指名学生板演并讲评,集体订正。

  二、尝试练习

  师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

  出示:30x÷2=360

  学生独立尝试完成,全班交流。

  指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

  三、巩固练习

  1、出示练习一第7题。

  (1)分析数量关系

  提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

  第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

  (2)学生独立计算,并检验答案是否正确,全班核对。

  小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

  2、练习一第8题。

  学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

  学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

  3、练习一第9题。

  学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

  学生独立解方程再集体订正。

  4、练习一第10题。

  教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

  5、练习一第11题。

  学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

  学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

  6、练习一第12题。

  提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

  学生独立列方程解答,同桌同学互相检查,再集体订正。

  7、练习一第13题。

  学生阅读第13题,理解后独立解决问题,再交流。

  教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

  四、全课小结

  说一说你这一节课的学习收获及还有什么问题。

  五、布置作业

  完成配套习题。

  教后反思:

  本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的'3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。

  通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。

初中数学优秀教案9

  教学目标:

  1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。

  2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。

  教学重点、难点

  正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。

  教学过程:

  一、平面内两直线位置关系

  1、操作:

  请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?

  2、分类:根据学生想象,出示下图(网格):

  师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的.分类依据。

  3、讨论交流,揭示平面内两条直线的位置关系。

  小结:

  两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?

  板书:

  相交

  两条直线的位置关系

  不相交

  二、探究一:垂直

  1、平面内两直线相交构成的4个角的特点。

  师:首先来研究平面内两条直线“相交”这一情况。

  师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?

  2、平面内两直线相交的特殊情况。

  提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?

  (旋转至垂直)

  师:现在两条直线相交成直角了。继续旋转呢?

  除了相交成直角以外,其余的情况,都是任意相交的。

  板书: 任意相交

  相交

  平面内两条直线的位置关系 相交成直角

  不相交

  3、练习:

  下列图形中哪两条直线相交成直角。

  ○1 ○2 ○3

  4、揭示概念。(媒体出示)

  板书: 任意相交

  相交

  平面内两条直线的位置关系 相交成直角 垂直

  不相交

  5、平面图形中的垂直现象。

  下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。

  ○1 ○2 ○3

  记作: 记作: 记作:

  6、动手操作。

  三、探究二:平行

  1、提问:长方形中,如果把相对的两条边无限延长,是否会在某一点相交?

  2、揭示概念

  板书: 任意相交

  相交

  平面内两条直线的位置关系 相交成直角 垂直

  不相交 平行

  3、平面图中的平行现象

  4、练习

  (1)说说下列哪些直线互相垂直?哪些互相平行?

  将图2改为:

  提问:e和f还平行吗?

  将图2改为:

  当角1等于角2时,e和f还平行吗?

  (2)渗透“同一”平面观念

  长方体中,这两条棱相交吗?那么他们平行吗?

  板书: 任意相交

  相交

  同一平面内两条直线的位置关系 相交成直角 垂直

  不相交 平行

  四、生活中的平行与垂直

  1、举例:生活中,你有没有发现“垂直与平行”的现象?

  2、提问:为什么这些地方要设计成“垂直”或者“平行”?

  五、课堂总结

初中数学优秀教案10

  一、教学目的:

  1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

  2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。

  二、重点、难点

  1.教学重点:菱形的`两个判定方法。

  2.教学难点:判定方法的证明方法及运用。

  三、例题的意图分析

  本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

  四、课堂引入

  1.复习

  (1)菱形的定义:一组邻边相等的平行四边形;

  (2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;

  (3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

  2.问题

  要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

  3.探究

  (教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

  通过演示,容易得到:

  菱形判定方法1对角线互相垂直的平行四边形是菱形。

  注意此方法包括两个条件:

  (1)是一个平行四边形。

  (2)两条对角线互相垂直。

初中数学优秀教案11

  一、教材、学情分析

  “扇形统计图”是义务教育课程标准实验教科书浙江教育出版社七年级上册第六章第四节的学习内容,是从生活中实际问题出发,结合新课程标准的理念,创造使用教材设计的一节课。生活中经常需要收集数据,而统计图是展示数据的重要方法,经常出现在报刊杂志媒体中,为此教科书安排了扇形统计图的认识和制作。

  学生在小学里曾经学习过扇形统计图,对扇形统计图的意义、特点和制作有初步的了解。本节课数据的收集是从学生身边熟悉的简单问题入手,让学生体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中获得有用的信息,进而养成数据说话的习惯,初一学生积极要求上进喜欢表现自己,课堂上应该给学生广阔的舞台,让学生充分思考、合作交流和探究,品尝学习带来的快乐。

  二、教学目标

  知识与技能目标:

  1、通过实际问题认识扇形统计图的含义和特点;

  2、能从扇形统计图中获取正确的信息,并能作出合理的解释和推断。

  过程与方法目标:

  1、在收集数据的过程当中,学会合作学习,并了解收集数据的方法步骤;

  2、在从扇形统计图中获取信息的过程当中,学会相互交流、相互评价;

  3、在决策和形成猜想中的'过程当中,感受收集和利用数据是非常重要的。

  情感与态度目标:

  1、通过从身边的一些简单问题,体验数据在解决不少现实问题中是有用的;

  2、在问题解决的过程当中,品尝发现带来的欢乐,树立学好数学的自信心。

  三、教学重点和难点

  重点:在合作讨论的过程当中体会数据在现实生活中的作用,理解扇形统计图的特点,学会制作扇形统计图。

  难点:从扇形统计图中尽可能多并且正确地获取信息、利用数据进行分析、作出判断。

  四、教学和活动过程

  (一)教学准备阶段

  1、利用PowerPoint制作一个简单课件(没有多媒体教室可采用小黑板展示);

  2、布置学生准备,圆规、铅笔、彩色笔、计算器、剪刀等工具。

  (二)教学流程

  1、引入 前面我们学习了折线统计图和条形统计图,今天我们将学习另外一种统计图——扇形统计图,大家小学里已经学过,有印象吗?能回忆起来是怎样的一个图吗?学生回答(是一个圆分成几部分),下面先让大家欣赏一个扇形统计图。(展示)同学们暑假肯定看了奥运会,能知道中国得了多少枚金牌吗?(32)

  射击 4 12。5%

  球类 8 25%

  水上项目 8 25%

  力量型项目 9 28。125%

  田径 2 6。25%

  体操 1 3。125%

  从这个统计图中同学们能知道中国在什么项目上有优势,什么项目上薄弱呢?大家知道吗?美国在什么项目上有优势?(田径)

  引入设计说明:

  1、从学生感兴趣的奥运会引入,激发学生的兴趣,调节课堂气氛。2、突出扇形统计图的优点——能直观反映各部分在总体中所占的比例,区别于折线型统计图和条形统计图。

  今天这节课我们来更深入一步认识一下扇形统计图,并教大家如何来画扇形统计图。

  2、出示课本学生快餐营养成份统计图,学生观察、思考,老师介绍扇形统计图的特点。

  用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫做扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例。

  第一问、第二问学生回答;

  第三问先说明什么是圆心角,顶点在圆心的角,课本上有摩天轮图(学生观察)。我们可以更直观向学生介绍,用事先准备好圆纸片对折,再对折,把圆分成相等四部分,这个直角就是圆心角。

  这样学生更直观、清楚地理解了圆心角的概念。

  还有奔驰汽车的标志,把圆分成相等的三部分,圆心角为120。

  总结:圆心角的度数为所占的比例乘以360。

  请一个学生回答第三问。

  3、做一做,P152,第(2)小题后面部分,老师分析。

  4、合作活动,师生互动(主要让学生学会画扇形统计图)

  提出问题—→调查情况—→收集数据—→整理数据—→画图

  问题:同学们从家里到学校交通情况。

  学生举手,一个学生点数,另一个学生记录,得出有关数据。

  ①步行 20人 40% 144 不妨设有50名学生,统计数据若如下(根据现场统计情况有不同的数据)。

  ②骑自行车 15人 30% 108

  ③坐公交 10人 20% 72

  ④其他 5人 10% 36

  画图步骤:1、画一个圆;

  2、按各组成部分所占的比例算出各个扇形的圆心角度数;

  3、根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明。

  注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图。

  学生再看例题:气象资料统计图,计算圆心角度数需用计算器。

  5、课内练习,学生板演,一个学生计算数据,一个学生画出扇形统计图。

  6、作业 1)P153 ①②③④,思考题⑤

  2)收集扇形统计图,渠道来自报纸、杂志、上网查询。

  3)自己设计一个调查方案,用调查的数据制作一个扇形统计图。

  五、教学设计说明

  新课程标准下的教学设计应全面贯彻六大基本理念,更加侧重理念③和理念④,本节课突出生动有趣的特点,学习方式多样化,让学生成为课堂的主人。引入的情景设计是学生身边的问题,例题采用学生自己收集数据、整理数据,最后画图,让学生感到一种自己研究成果的成就感,相比之下,比课本的气象资料更具有感染力。作业中有一题是自己设计一个调查方案,培养学生动手能力、实践能力,这就是新课程大力倡导的。

初中数学优秀教案12

  教学目标:

  知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。

  过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。

  情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。

  教学重点:用计算器进行数的加、减、乘、除、乘方的运算。

  教学难点:能用计算器进行数的乘方的运算。

  教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难 点。

  教学方法:师生互动法。

  课时安排:1课时。

  教具:Powerpoint幻灯片、科学计算器。

  环节 教 师 活 动 学 生 活 动 设 计 意 图

  创设情境 一、从问题情境入手,揭示课题。

  (出示幻灯一)

  在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗

  教师对学生的回答给予点评,并带着问题引入本节课题:

  板书:3.4 用计算器进行数的计算 在教师的引导下,学生仔细观察、思考,积极回答。 通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的 求知欲。

  探究活动一 一、 介绍计算器的使用方法。

  (出示幻灯二)

  B型计算器的面板示意图如下:

  教师结合示意图介绍按键的使用方法。

  学生根据教师的介绍,使用计算器进行实际操作。 通过训练,使学生掌握计算器 的按键操作,熟悉计算器的程序设计模式。

  探究活动二 二、用计算器进行加、减、乘、除、乘方运算

  (出示幻灯三)

  例1 用计算器求下列各式的值

  (1)(-3.75)+(-22.5)

  (2)51.7(-7.2)

  解:(1)

  (-3.75)+(-22.5)=-26.25

  学生相互交流,并用计算器进行实际操作。 通过计算,使学生熟悉计算器的用法。

  探究活动二 (2)

  51.7(-7.2)=-372.24

  学生相互交流,并用计算器进行实际操作。

  通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。

  探究活动二 例2 用计算器计算(精确到0.001)

  (-0.45)5

  (-0.45)5-0.018

  相互讨论,并进行实际操作。 通过计算,使学生会用计算器进行有理数的乘方运算。

  探究活动二

  例3 用计算器求值

  (1)(-6)2(2)-62

  解:

  思考:

  注意观察它们的按键顺序有什么不同?

  学生认真观察、讨论,得出结论。

  通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。

  探究活动三 三、随堂练习

  (出示幻灯四)

  用计算器求值

  1.9.23+10.2

  2 . (-2.35)(-0.46)

  3.( -3.45)3

  4.-2.082

  学生独立操作完成。 通过训练,使学生能熟练地用计算器进行数的运算。

  探究活动四 四、实际应用,能力提高。

  1.用计算器解决“创设情境”中提出的问题。

  (出示幻灯五)

  2.张老师在银行贷月息为0.456%的住房 贷款50 000元,满5年时共需付款50 000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元? 在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。 通过实际应用,进一步提高学生运用计算器解决实际问题的能力。

  学习总结 五、学习总结

  这节课你有哪些收获?有什么体会?

  教师简要点评:

  (1)由于受计算器显示数位的限制,计算结果是一个近似数。

  (2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的形式来显示。

  学生相互交流自己的 收获和体会,教师参与互动并给予鼓励 性的评价。 学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

  课堂反馈

  1.用计算器进行计算(略)

  2.(1)用计算器计算下列各式:

  1111,111111,1 1111 111,11 11111 111 。

  (2)根据 (1)的计算结果,你发现了什么规律?

  (3)如果不用计算器,你能直接写出1 111 1111 111 1 11的结果吗? 让学生熟练运用计算器进行操作,学以致用。 及时反馈,并使学生能运用计算器探究一些有趣的数学规律。

  附:板书设计:

  3.4用计算器进行数的`计算

  1.介绍计算器的使用方法;

  2.运用计算器进行数的运算;

  3.运用计算器探究数学规律。

  教学反思:

  1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。

  2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。

  3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的 依赖于学习者的主观能动性,教学成本也大幅度提高。

初中数学优秀教案13

  教学目标:

  1、通过学生自己动手画图,让学生体会轴对称、平移和旋转三者之间的联系,培养学生探究的精神。

  2、让学生深刻体会对称思想的重要性,提高应用能力。

  教学过程:

  一、向学生展示生活中美丽的对称图形,并指出其是怎样的对称?(展示课件)

  二、探究规律:

  课前完成书本第6页:做一做、和第14页:做一做。(展示课件)

  轴对称、平移和旋转是图形变换的三种最基本的形式。表面上它们是三件不相干的事,可经过反复轴对称,我们发现:

  规律1:当对称轴两两互相平行的时候,经过偶数次的轴对称变换相当于实现一次伟大的平移变换,平移的方向与对称轴距离矢量和的方向一致,平移的距离恰好是对称轴距离的代数和的2倍;

  若对称轴两两相交于同一点,经过偶数次的轴对称变换相当于实现一次伟大的旋转变换,旋转中心就是对称轴的交点,旋转方向就是对称轴交角矢量和的方向一致,旋转的角度恰好是对称轴交角的代数和的2倍。(难点)

  规律2:一些图形经过轴对称、平移、旋转变换后的,图形的形状、大小与原图完全一样。这里的“完全一样”是一个非常好用的性质,因为它意示着:对应线段、对应角、对应图形的周长、面积相等。

  三、应用规律解题:(重点)(展示课件)

  例1、已知:如图,点A和点D关于直线MN对称,点B和点C也关于直线MN对称,AC与BD相交于点O,且点0在直线MN上,请你写出尽可能多的结论。(至少写出8条)

  例2、如图,在一个长为200米,宽为150米的长方形公园里,拟建三条宽都为C米的人行道,其余部分为绿化带,试问,绿化带面积是多少平方米?(列式即可)

  例3、已知正方形ABCD和正方形AEFG有一个公共点A,点D、E分别在线段AD、 AB上。

  (2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等。并以图2为例说明理由。

  解答:连结BE,

  因为在正方形ABCD和正方形AEFG中,

  AD=AB; AG=AE;

  所以在旋转过程中,

  线段AD对应线段AB;

  线段AG对应线段AE;

  则线段DG对应线段BE;

  因此:BE=DG。

  练习1、如图所示,请你用三种方法,把左边的小正方形分别移到右边的'三个图形中,使它成为轴对称图形。

  练习2、如图所示,已知AE∥DF,BE∥CF,AD∥BC,AD=BC且AB⊥BC,AB=3,AD=4。求多边形AEBCFD的面积。

  练习3、如图,将一个扇形(∠AOB=90°)平移到一个长方形上,恰好OCDE为正方形,若正方形边长为1,则图中阴影部分的面积为多少?

  练习4、如图所示,点O是边长为a的正方形ABCD的中心,将一块半经足够长,圆心角∠EOF=90°的扇形纸板的圆心放在点O处,并将纸板绕点O旋转。求正方形ABCD的边被纸板覆盖部分的长度和被纸板覆盖部分的面积。

  四、小结:

  三种图形变换的联系和两个规律及其应用。

  五、作业:

  1、请同学们设计符合下列要求的图形

  (1) 使它是中心对称图形,又是轴对称图形;

  (2) 使它是中心对称图形,但不是轴对称图形;

  2、预习下一章内容,尝试用对称的思想分析平行四边形的性质。

  六、课后反思:

  本节教学前,经备课组老师建议,取消了规律1的探索,补充了下面的一道开放式探索题:在正方形的瓷砖面上画花纹,要求将砖面分成4部分,每部分形状、大小完全一样,请作出你的设计。 学生设计出12种的方案,并用对称的思想加以归类总结,取得了很好的效果。但作为一堂“指导----自主----合作”的教学模式,老师安排的内容是否太多,学生自主学习放到课前,该如何监控等问题还有待进一步探索。

初中数学优秀教案14

  教学目标:

  1、知识与技能:使学生经历相似多边形概念的形成过程,了解相似多边形的定义,并能根据定义判断两个多边形是否相似。

  2、过程与方法:在探索相似多边形本质特征的过程中,进一步发展学生归纳、类比、反思、交流等方面的能力,体会反例的作用。

  3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。

  教学重点:探索相似多边形的定义过程,以及用定义去判断两个多边形是否相似。

  教学难点:探索相似多边形的定义过程。

  教学过程:

  (一)创设情景,导入新课。(3分钟)

  由于学生已经学习了形状相同的图形,在这里我向学生展示一组图片(课件),引导学生从中找出形状相同的图形。学生回答后,利用课件演示抽象出多边形。

  大多数学生可能会指出黑板边框的内外边缘所围成的矩形的形状也相同。我紧接着创设悬念:这两个矩形的形状相同吗?

  利用课件演示,把内边缘的矩形的长和宽按相同比例放大后不能与外边缘矩形重合。此时的学生肯定倍感疑惑,急切想探个究竟。教师顺势导入新课:

  那么满足什么条件的多边形才是形状相同的多边形呢?今天我们一起来探究相似多边形。

  (二)自主学习,合作探究。(15分钟)

  1、动手实验,初步感知定义。

  课前发给每个小组一套相似多边形的图片(其中包括两个相似三角形、一个等边三角形、两个相似四边形),组织学生按形状相同给多边形找朋友。然后引导学生以小组为单位从中选择一组多边形探究解决下面问题。

  (1)在这两个多边形中,是否有相等的内角?设法验证你的猜想。

  (2)在这两个多边形中,相等的内角的两边是否成比例?

  (设计意图:引导学生分组讨论、探究、验证、交流,并进行演示,着重引导学生说明验证的方法,无论学生提出什么样的验证方式,只要有道理,教师都应给予充分肯定和鼓励。)

  对相等内角的两边是否对应成比例这个问题学生可能会感到困难,由于学生已经学习了成比例线段,我会利用这一点启发学生运用测量、计算的方法解决这一难点。

  利用多媒体演示形状相同的六边形的对应角相等,然后让学生观察计算得到,相等的内角的两边成比例。然后给出对应角、对应边的概念,引导学生明确对应角、对应边的含义。

  2、特例探究,进一步体验定义。 (课件出示问题)

  例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?

  (1)三角形ABC与正三角形DEF;

  (2)正方形ABCD与正方形EFGH.

  (设计意图:引导学生通过自主探究解决这个问题后进行适当引申,使学生认识到:边数相同的正多边形都相似。)

  3、归纳总结,形成概念。

  教师设问:回忆一下我们刚才探究过的每一组多边形,你能发现它们的共同特点吗?(课件出示四组图形)

  (设计意图:引导学生尝试用自己的语言叙述定义,教师给予规范并板书。随即给出相似多边形的表示方法和相似比的概念,接下来引导学生回忆表示全等三角形时应注意的问题,也就是要把表示对应顶点的字母写在对应的位置上,然后引导学生用类比的方法得到:在记两个多边形相似时也要把表示对应顶点的字母写在对应的位置上,说明相似比与两个多边形叙述的顺序有关。)

  4、深化理解。

  (1)满足什么条件的两个多边形相似?

  (2)如果两个多边形相似,那么它们的对应角和对应边有什么关系?

  (设计意图:使学生认识到:相似多边形的定义既是最基本最重要的判定方法,也是最本质最重要的特征。)

  (三)辨析研讨,知识深化。(14分钟)

  1、议一议:

  (1)观察下面两组图形,图(1)中的两个图形相似吗?为什么?图(2)中的两个图形呢?与同桌交流。 (课件出示图形)

  (2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?

  (3)如果两个菱形相似,那么他们需要满足什么条件?

  (设计意图:为了培养学生从多角度理解问题,我运用教材中两个典型的.反例,引导学生讨论探究,使学生认识到:不相似的两个多边形的角也可能对应相等,不相似的两个多边形的边也可能对应成比例;反过来说:只具备各角分别对应相等或各边分别对应成比例的多边形不一定相似。进而使学生明确:判断两个多边形形相似,各角分别对应相等、各边分别对应成比例这两个条件缺一不可。通过正反两方面的对照,能使学生更深刻地理解相似多边形的定义。这是个易错点,教学时应注意给学生留出充分思考交流的时间。另外在设计时,我在教材原有内容的基础上添加了菱形的情况(见课件),引导学生探索两个菱形相似需要满足什么样的条件。)

  2、做一做。

  设问:学到这儿,你认为黑板边框内外边缘所成的这两个矩形相似吗?请你计算说明。课件出示问题:

  一块长3m、宽1.5m的矩形黑板,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?(学生自主探索解决)

  (设计意图:为了满足学生多样化的学习需求,使不同的学生都能获得令自己满意的数学知识,我把此题进行了适当的拓展和延伸。)

  拓展一:如果将黑板的上边框去掉,其他条件不变。

  那么边框内外边缘所成的矩形相似吗?为什么?

  拓展二:在拓展一的基础上,如果矩形的长为2a,宽为a,

  边框的宽度为x。那么边框内外边缘所成的矩形还相似吗?为什么?

  (设计意图:引导学生讨论计算,解决问题。目的是让学生明确并不是所有相互套叠的两个矩形都不相似。使学生初步认识到直观有时是不可靠的,研究数学问题需要在提出猜想的基础上进行推理和计算,帮助学生养成严谨的学风。)

  (四)学以致用,巩固提高。(6分钟)

  慧眼识金!

  1、判断下列各题是否正确:

  (1)所有的矩形都相似。

  (2)所有的正方形都相似。

  (3)对应边成比例的两个多边形相似 问题解决!

  2、下图中两面国旗相似,则它们对应边的比为 。

  3、如图,两个正六边形广场砖的边长分别为a和b,它们相似吗?为什么?

  (课件出示图形)

  (设计意图:为了体现相似图形在生活中的广泛应用,我以实际问题为背景设计练习题。这是一组基础题,意在巩固相似多边形的定义以及相似比的计算。)

  (五)课堂小结,知识升华。(2分钟)

  师生共同完成。

  (设计意图:教师首先肯定学生在课堂中大胆的猜想和思维的积极性,然后引导学生从几方面进行反思:我学会了什么,我最感兴趣的是,我发现了什么,我能解决,我获得的数学方法是帮助学生构成新的知识网络,形成技能。)

  (六)布置作业:

  1、 P113 习题第3题

  2、画一画:在方格纸中画出两个相似多边形。

  3、探究题:小林在一块长为6m,宽为4m一边靠墙的矩形的小花园周围,栽种了一种蝴蝶花装饰,这种蝴蝶花的边框宽为20cm,边框内外边缘所围成的两个矩形相似吗?第1、2题作为必做题;第3题作为选做题,是对课堂上做一做的再次拓展和延伸:当矩形的长与宽的比不再是2:1时,边框内外边缘所围成的两个矩形还相似吗?

  板书设 4、相似多边形

  定义: 各角对应相等,

  各边对应成比例

  表示方法:∽

  相似比:

初中数学优秀教案15

  教学目的 知识技能 使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.

  数学思考 提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.

  解决问题 通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.

  情感态度 通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.

  教学难点 审题,从文字语言中挖掘有价值的信息.

  知识重点 会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.

  教学过程 设计意图

  教学过程

  问题一:列方程解应用题的一般步骤?

  师生共同回忆

  列方程解应用题的步骤:

  (1)审题;(2)设未知数;

  (3)列方程;(4)求解;

  (5)检验; (6)答.

  问题二:矩形的周长和面积?长方体的体积?

  问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的'四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.

  教师活动:引导学生读题,找到题目中的关键语句.

  学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.

  教师活动:用多媒体演示分析,解题方法.

  做一做

  如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.

  课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的 ,求这个正方形的边长.

  问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?

  学生活动:在众多的文字中,找到关键语句,分析相等关系.

  教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.

  课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?

  2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25 %的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)

  复习列方程解应用题的一般步骤.

  本题为后面解决有关面积、体积方面问题做铺垫.

  提高学生的审题能力.使学生会解决有关面积的问题.

  解决体积问题的问题

  培养学生用数学的意识以及渗透转化和方程的思想方法.

  强调对方程的解进行双重检验.

  小结与作业

  课堂

  小结 利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.

  本课

  作业 课本第43页 习题2

  课后随笔(课堂设计理念,实际教学效果及改进设想)

【初中数学优秀教案】相关文章:

高二数学优秀教案10-31

高二数学优秀教案(经典15篇)09-02

数学五年级下册教案优秀06-19

初中数学课件11-03

初中数学教学总结07-25

初中数学教学设计05-22

初中数学教学反思06-10

初中数学说课稿02-10

初中数学教学总结04-07