加法的意义和运算定律教案

时间:2024-04-13 18:11:27 教案 我要投稿
  • 相关推荐

加法的意义和运算定律教案

  作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案有利于教学水平的提高,有助于教研活动的开展。写教案需要注意哪些格式呢?以下是小编为大家收集的加法的意义和运算定律教案,仅供参考,欢迎大家阅读。

加法的意义和运算定律教案

加法的意义和运算定律教案1

  教学内容

  教科书第12——13页的内容,练习三的第1——4题,数学教案-加法的意义和运算定律。

  教学目的:

  1、使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

  2、使学生理解并掌握加法交换律。

  授课类型:新授课

  教学方法:讨论法、讲授法

  教学重点难点:加法的意义

  授课时间:一课时

  教学过程:

  一:教学加法的意义

  1、加法的意义

  (1)教学例1

  教师出示例1,让学生读题,边指名说出条件和问题,教师用线段图表示出数量关系。

  让学生自己解答,解答后,说一说为什么用加法计算。教师重述用加法算的理由,并板书。

  137+359=494(米)

  答:北京到济南的铁路长494米。

  在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

  做练习三的第1题。

  让学生说出为什么用加法计算。

  2、教学加法各部分的名称。

  教师指着137+359=494问:

  137和357在加法算式中叫什么数?494叫什么?

  137 + 359 =494

  │ │ │

  加数 加数 和

  提问:我们上面做的加法,两个加数是什么样的数?

  任何两个自然数相加得到的和都比加数怎样?

  一个自然数和0相加得到的和怎样?

  0和0相加会怎样?

  总结上面的'结论,小学数学教案《数学教案-加法的意义和运算定律》。

  二、教学加法交换律

  加法运算有一些基本性质,对我们以后的计算很有用,下面我们就来学习加法的一个运算定律。

  例1求北京到济南的铁路长是怎样列式的?还可以怎样列式?

  137+357=357+137

  教师再出示几组不同的算式让学生先填上计算符号,再观察,看一看它们有什么样的关系。

  18+17( )17+18

  124+235( )235+124

  比较三个等式归纳出一般规律。

  (1)这三个等式中,每组算式有几个加数?

  (2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?

  请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。

  用字母表示加法交换律

  如果用字母a 和b分别表示两个加数,可以写成下面的形式:

  a+b=a+b

  做第13页的“做一做”

  三、巩固练习:

  做练习三的第——4题。

  让学生根据加法的交换律来做。

  四、小结:

  今天我们学习了加法的意义和加法的交换律,谁能结合具体的题目说一说加法的意义和加法的交换律的含义?

  附板书:加法的意义和加法交换律

  137+359=494(米)

  答:北京到济南的铁路长494米。

  137 + 359 =494

  │ │ │

  加数 加数 和

  137+357=357+137

  18+17( )17+18

  124+235( )235+124

  a+b=a+b

加法的意义和运算定律教案2

  教学内容:加法的意义和加法交换律--教材第48-49页例1-2,做一做题目及练习十一1-2题。

  教学目的:

  1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

  2.使学生理解并掌握加法交换律。

  教学过程:

  一、教学加法的意义

  教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

  1.加法的意义。

  (1)教学例1。

  教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

  然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,也就是要把137和357合并起来,所以要用加法计算。)教师边复述用加法算的理由,边板书出加法算式和答案。再进一步提问:

  “加法是什么样的运算?”

  在此基础上,教师给出加法的意义:把两个数合并成一个数的运算,叫做加法。

  (2)做练习十一的第1题。

  要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

  2.加法各部分的名称。

  教师指着137+357=494,提问:

  137和357在加法算式中叫什么数?(加数。)

  它们相加得到的结果494叫什么?(和。)

  然后教师联系加法的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

  提问:

  “我们上面做的加法,两个加数是什么样的数?”(自然数。)

  “任何两个自然数相加得到的和都比加数怎样?”(大或者同样大。)

  “一个数和0相加得到的和怎样呢?”(还得原数。)

  “你能举出一个数和0相加的几个例子吗?”

  教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

  然后接着问:

  “0和0相加会怎样?”(还得0。)

  “从上面的例子我们可以看出一个数和0相加还得这个数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

  二、教学加法交换律

  教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

  1.结合例1的两种解法,引导学生比较它们的.特点。

  提问:

  “上面的例1,求北京到济南的铁路长是怎样列式计算的?”

  “如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

  学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

  接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加。)不同点是什么?(等号左边是137加357,等号右边是357加137。)

  引导学生回答后,教师归纳:137加357与357加137的得数一样,也就是和不变。

  2.出示例2,引导学生比较,加以概括。

  提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

  教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

  教师板书出下面的算式:

  18+17○17+18

  124+235○235+124

  让学生算一算,再提问:

  “每组算式有什么关系?○里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”

  3.比较三个等式,归纳出一般规律。

  引导学生归纳,突出以下几点:

  (1)这三个等式中,每组算式有几个加数?(两个加数。)

  (2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?

  请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第49页方框里的话。

  4.用字母表示加法交换律。

  教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

  学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a和b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作:“ei”“bi”,不要按汉语拼音来读,并领读几遍。)

  学生回答后,教师板书:a+b=b+a

  说明:a和b可以表示0、1、2、3、......中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a”,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2;137+357=357+137;18+17=17+18等等。

  接着教师提问:

  “想一想我们在以前学过的哪些计算中用到了加法交换律?”

  使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

  5.做第49页的“做一做”。

  让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

  三、巩固练习

  做练习十一的第2题。

  要注意让学生弄清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解。对于运算定律的表述,只要求表述得清楚没有错误,不要求学生一字不差地背下来。

  四、小结

  教师:今天我们学习了加法的意义和加法的一个运算定律,叫做加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

加法的意义和运算定律教案3

  教学目标

  (一)使学生理解加法的意义,并能在实际计算中应用。

  (二)使学生掌握加法交换律,并会应用定律进行验算。

  (三)培养学生观察、比较、概括推理的能力。

  教学重点和难点

  由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性。因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中。由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点。

  教学过程设计

  (一)复习准备

  1.口算。

  39+47            83+15          420+180

  47+39            15+83          180+420

  2.口答。

  (1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?

  (2)小敏做了25朵红花,做的黄花比红花多5朵。做黄花多少朵?

  (3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?

  (二)学习新课

  师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题。(板书:加法的意义和运算定律)

  1.教学加法的意义。

  (1)例  一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?

  读题后,师生共同完成线段图:

  学生独立解答:

  137+357=494(千米)

  加数 加数 和

  答:北京到济南的铁路长494千米。

  提问:

  ①这道题为什么用加法计算?

  ②加法是一种什么样的运算?

  ③要合并的两个数指的是什么数?合并成的一个数指的是什么数?

  引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米。

  启发提问:加法的意义是什么?说说看。

  引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”。

  教师板书加法的意义。

  练一练

  练习十一第1题,应用加法的意义说明各题为什么用加法计算。

  在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题。

  (2)教学加法各部分名称。

  提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)

  教师板书。(写在例1算式的下面)

  教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和。

  反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?

  (3)加法中有关0的问题。

  提问:

  ①我们例1做的加法,两个加数是什么样的数?(是自然数)

  ②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)

  ③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)

  引导学生讨论:

  0的加法可能有哪几种情况?举例说明。

  在学生讨论的基础上,使学生明确:一个数加上0,还得原数。

  (4)阅读课本第47页“加法的'意义”。

  2.教学加法交换律。

  根据加法的意义引出加法交换律。

  提问:

  (1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)

  (2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变。也可说出这是两个相等的式子,写成137+357=357+137)

  教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目。

  (3)出示 18+17○17+18

  350+150○150+350

  274+100○100+274

  873+127○127+873

  提问:

  ①观察每组算式有什么关系?○里应填什么符号?

  引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”。

  ②这几组算式有什么共同特点?你发现了什么规律?

  引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关。因此可以得出:交换加数的位置,它们的和不变。

  教师明确:你们发现的这个规律,就叫做加法交换律。

  板书:“两个数……,它们的和不变。”

  教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数。大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?

  学生看书自学:第48页。

  反馈提问:

  什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?

  教师板书加法交换律的字母公式:

  a+b=b+a

  引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍。

  教师指出:学习了加法交换律,可以进行加法验算,要会运用定律。

  练一练

  现在用你们学过的知识做第48页的“做一做”。

  订正题时要说出根据,以进一步巩固加法交换律的概念及其应用。

  3.总结。

  (1)说一说加法的意义是什么?

  (2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?

  (三)巩固反馈

  1.口答。(用加法意义说明算法)

  玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?

  2.下面各式哪些符合加法交换律?

  140+250=260+130                 260+450=460+250

  20+70+30=70+30+20             a+400=400+a

  3.根据运算定律在“□”里填上适当的数。

  (1)□+55=55+42    (2)a+44=□+□

  (3)38+35=□+38    (4)48+□=72+□

  订正时,要求学生严格按照定义、定律来加以说明。

  (四)作业

  练习十一第2~4题。

  课堂教学设计说明

  加法是数学中最基本的运算方法之一。在前三年中学生已经学会加法的计算方法,对加法的意义也有了感性认识,这节课就是在学生已经学过的加法知识的基础上,明确概括出加法的意义,使学生对加法的认识从感性上升到理性。不仅理解加法的意义,而且还能用它解决实际问题;不仅概括出加法运算定律,而且进一步用字母式子表示,为以后学习“用字母表示数”打下基础。

  由于本节知识都是在已学的基础上进行的,因此要突出观察、比较、抽象、概括的过程。新课分为两部分。第一部分学习加法的意义,通过学生独立解答例题后,在讨论的过程中,明确加法是一种什么样的运算,从而引导学生概括出加法的意义,并用加法的意义对具体问题进行说理,以加深学生对加法意义的理解和应用;第二部分学习加法交换律,通过对例题的不同解法及对几组算式的观察、比较,找出它们的共同点,启发学生总结出一般规律。在教学过程中,力争充分体现学生参与学习的全过程,并在其中使学生的观察,概括能力得到提高。

  本节课采取边讲边练的形式,及时反馈,目的明确,最后再进行综合练习,以加深学生对概念的理解和应用。

  板书设计

  加法的意义和运算定律

  例1  一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?

  137+357=494(千米)

  加数加数和

  357+137=494(千米)

  答:北京到济南的铁路长494千米。

  把两个数合并成一个数的运算,叫做加法。

  18+17 17+18

  350+150 150+350

  274+100 100+274

  873+127 127+873

  两个数相加,交换加数的位置,它们的和不变。这叫做加法交换律。字母公式:

  a+b=b+a

【加法的意义和运算定律教案】相关文章:

加法和减法的教案11-24

运算定律教学反思02-05

小数的加法和减法教学设计11-08

物理库仑定律教学教案01-20

小数的意义教案03-13

《分数的意义》教案08-23

大班数学5以内的加法教案11-23

加法教学反思11-18

比例意义和基本性质教学反思12-29