- 相关推荐
高二数学优秀教案
作为一名优秀的教育工作者,通常需要用到教案来辅助教学,教案是实施教学的主要依据,有着至关重要的作用。那么什么样的教案才是好的呢?下面是小编精心整理的高二数学优秀教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高二数学优秀教案1
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1.会用坐标表示平面向量的加法、减法与数乘运算.
2.理解用坐标表示的平面向量共线的条件.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.
三、教学过程
(一)知识梳理:
1.向量坐标的`求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=xxxxxxxxxxxxxxxx_
||=xxxxxxxxxxxxxx_
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设=(x1,y1),=(x2,y2),则
+=-=λ=.
2.向量平行的坐标表示
设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.
(三)核心考点·习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设(1)求3+-3;
(2)求满足=m+n的实数m,n;
练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)
(m,n∈R),则m-n的值为
考点2平面向量共线的坐标表示
例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)
若(+k)∥(2-),求实数k的值;
练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1.向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.
2.两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为;的值为.
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于( )
【思考】两非零向量⊥的充要条件:·=0? .
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为( )
A.6B.7C.8D.9
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..
五、课后作业(课后习题1、2题)
高二数学优秀教案2
1.预习教材,问题导入
根据以下提纲,预习教材P54~P57,回答下列问题。
(1)在教材P55的“探究”中,怎样获得样本?
提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取。
(2)最常用的简单随机抽样方法有哪些?
提示:抽签法和随机数法。
(3)你认为抽签法有什么优点和缺点?
提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用。
(4)用随机数法读数时可沿哪个方向读取?
提示:可以沿向左、向右、向上、向下等方向读数。
2.归纳总结,核心必记
(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
(2)最常用的简单随机抽样方法有两种——抽签法和随机数法。
(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的。
[问题思考]
(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?
提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关。
(2)抽签法与随机数法有什么异同点?
提示:
相同点
①都属于简单随机抽样,并且要求被抽取样本的`总体的个体数有限;
②都是从总体中逐个不放回地进行抽取
不同点
①抽签法比随机数法操作简单;
②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本
高二数学优秀教案3
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P2~P5,回答下列问题.
(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在数学中算法通常指什么?
提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.
2.归纳总结,核心必记
(1)算法的概念
12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表
数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法通常可以编成计算机程序,让计算机执行并解决问题
(2)设计算法的目的
计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的'步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.
[问题思考]
(1)求解某一个问题的算法是否是的?
提示:不是.
(2)任何问题都可以设计算法解决吗?
提示:不一定.
高二数学优秀教案4
【教材分析】
1.知识内容与结构分析
集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。
2.知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。
3.教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。
【学情分析】
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。
【教学目标】
1.知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法。
2.过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3.情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
【重点难点】
1.教学重点:集合的基本概念与表示方法。
2.教学难点:选择合适的方法正确表示集合。
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。
【教学过程】
课前准备:
提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。
导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)
下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)
教与学的过程:
预设问题设计意图师生活动教师活动
一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)
学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的.总体叫做集合(set)(简称集)。学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。
可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。
即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。
(2)互异性:同一个集合中的元素是互不相同的。
(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。
高二数学优秀教案5
教学目标
一、知识与技能
(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.
二、过程与方法
创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.
三、情态与价值
通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的`方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备
教学重难点
重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.
难点:理解弧度制定义,弧度制的运用.
教学工具
投影仪等
教学过程
一、创设情境,引入新课
师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)
显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.
在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.
二、讲解新课
1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.
2.弧度制的定义
长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).
(师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.
我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.
角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应.
四、课堂小结
度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
五、作业布置
作业:习题1.1A组第7,8,9题.
课后小结
度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
课后习题
作业:习题1.1A组第7,8,9题.
板书
高二数学优秀教案6
教学要求:理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。
教学重点:熟练地求交点。
教学过程:
一、复习准备:
1.直线A x+B +C =0与直线A x+B +C =0,
平行的充要条件是 ,相交的充要条件是 ;
重合的充要条件是 ,垂直的充要条件是 。
2.知识回顾:充分条件、必要条件、充要条件。
二、讲授新课:
1.教学例题:
①出示例:求直线=x+1截曲线= x 所得线段的.中点坐标。
②由学生分析求解的思路→学生练→老师评讲
(联立方程组→消用韦达定理求x坐标→用直线方程求坐标)
③试求→订正→小结思路。→变题:求弦长
④出示例:当b为何值时,直线=x+b与曲线x + =4 分别 相交?相切? 相离?
⑤分析:三种位置关系与两曲线的交点情况有何关系?
⑥学生试求→订正→小结思路。
⑦讨论其它解法?
解二:用圆心到直线的距离求解;
解三:用数形结合法进行分析。
⑧讨论:两条曲线F (x,)=0与F (x,)=0相交的充要条件是什么?
如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?
( 联立方程组后,一解时:相切或相交; 二解时:相交; 无解时:相离)
2.练习:
求过点(-2,- )且与抛物线= x 相切的直线方程。
三、巩固练习:
1.若两直线x+=3a,x-=a的交点在圆x + =5上,求a的值。
(答案:a=±1)
2.求直线=2x+3被曲线=x 截得的线段长。
3.课堂作业:书P72 3、4、10题。
高二数学优秀教案7
教学目的:
1.掌握常用基本不等式,并能用之证明不等式和求最值;
2.掌握含绝对值的不等式的性质;
3.会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式.学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关
教学过程:
一、复习引入:本章知识点
二、讲解范例:几类常见的问题
(一) 含参数的不等式的解法
例1解关于x的不等式 .
例2解关于x的不等式 .
例3解关于x的不等式 .
例4解关于x的不等式
例5 满足 的x的集合为A;满足 的x
的集合为B 1 若AB 求a的取值范围 2 若AB 求a的取值范围 3 若AB为仅含一个元素的集合,求a的值.
(二)函数的最值与值域
例6 求函数 的最大值,下列解法是否正确?为什么?
解一: ,
解二: 当 即 时,
例7 若 ,求 的最值。
例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.
例9 设 且 ,求 的最大值
例10 函数 的最大值为9,最小值为1,求a,b的值。
三、作业:
1.
2. , 若 ,求a的.取值范围
3.
4.
5.当a在什么范围内方程: 有两个不同的负根
6.若方程 的两根都对于2,求实数m的范围
7.求下列函数的最值:
1
2
8.1 时求 的最小值, 的最小值
2设 ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求证: 的最小值为3
10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和
高各取多少时,用料最省?(不计加工时的损耗及接缝用料)
高二数学优秀教案8
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:
离散型随机变量期望的.概念及其实际含义。
难点:
离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
【高二数学优秀教案】相关文章:
高二数学教学反思10-28
高二优秀作文11-06
高二数学教学计划11-08
高二优秀作文15篇11-07
高二数学下学期教学总结01-24
高二数学教学计划15篇11-15
高二数学教学计划(15篇)12-24
《廉颇蔺相如列传》高二教案11-05
高二数学教学工作总结11-26